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 Preface 
This is a work in progress, version .95, i.e. not yet a first edition. The current 

text will surely be edited, and more content will be added. The silver lining 

to this is that your feedback can affect the future direction of the text. 

In 2005 a colleague and I shopped a proposal to build my “Turing Complete” 

Processor, but did not find funding. I am writing this text so the proposal will 

not be lost to the sands of time. This volume describes the theory behind the 

architecture, and while doing so it also builds a generally descriptive bridge 

from computation theory to real computer architectures. 

This document follows RFC 2119 for the definition of the words: may, 

should, and must. See https://www.rfc-editor.org/rfc/rfc2119. Accordingly 

the word may signifies the giving of permission or the presentation of options. 

Consider this example. You are entering a subway station, and there is a 

turnstile that you must pass through to get inside. The turnstile is a state 

machine of sorts. With no coin inserted it is locked. With a coin inserted it 

allows one turn then goes back to the locked state. You look at the plaque by 

the coin slot and it says: "You may pass through the turnstile after depositing 

a coin." These directions are not making a prediction for the future, rather 

they are telling you what you are allowed to do. In this paper when I want to 

predict that something is probable to happen, but not certain, I will use the 

word might. This paper talks a lot about state machines, so understanding 

these definitions will be very helpful. 

Source code will be shown in a dark red monospaced font. Headings follow 

the form of sentences without the final period. Technical terms that are being 

defined in a section and appear in the section heading are shown in italics. In 

the body of sections technical terms not in the heading will be shown italics 

when first introduced, and otherwise will have no special decoration. 

Citations are given within the text by DOI or ISBN number. 
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Formatting this book for the Kindle reader was a challenge that ironically 

involved some of the very issues discussed in this book. The Kindle reader 

allows the user to change the fonts.  Hence all dimensions are relative to 

logical units.  In contrast Microsoft word is one of the oldest WYSIWIG 

editors – i.e. what you see is what you get.  It favors absolute measurements 

for distances from anchors and the sizes of text boxes.  In Word when 

something does not fit, the author moves things around until they look right.  

These two philosophies of logical formatting and absolute measure 

formatting are generally incompatible. 

It is instructive to consider the case of the text box.  Microsoft Word text 

boxes do not grow, so if a user makes the font bigger, content will be clipped. 

A hedge against this is to pad the text box with spaces.  However, too much 

space is not aesthetic because it looks wasteful.  How much space is 

necessary?  We cannot know.  I say this is instructive, as we discuss this very 

problem of fixed length memory allocations for expanding data in this 

volume. 

In this document the diamond, ♦, placed before a figure is a one character 

long paragraphs that serve as an anchor point.  If the diamond is not on the 

upper left of the figure you know that Word and Kindle conspired together to 

float the figure into the anchor paragraph, but hopefully Kindle’s evil deed 

was thwarted because the paragraph is only one character long, so the 

diamond just moves to the bottom of the figure.  

Another thing that Kindle does, which is disastrous for a CS book: it strips 

out the monospaced fonts.  It will keep italic and bold, but not monospacing. 

This messes up source code examples.  The recent Kindle Create program 

has a work around – it turns all text boxes into images. 
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Introduction 
Let us begin by contemplating the meaning of the term Turing Complete as it is 

applied to an instruction set architecture. 

An instruction set architecture defines a set of instructions and registers used at 

the assembly language level for programming a processor. Invariably we will 

find among the instructions those used for computation, and those of a different 

nature which either directly or through side effects load and store data from a 

system memory. Unless I/O is memory mapped, other instructions will be for 

moving data to and from peripheral channels. It will almost always be the case 

that there is a secondary storage device that is accessed through a channel, via 

memory mapped I/O, or through a network interface. On modern machines there 

will also be some sort of interrupt architecture whereby various events may be 

programmed to invoke instruction sequences without having to explicitly call 

or branch to those instruction sequences. 

Typically the instruction set architecture is not used directly by programmers. 

Instead there will be a collection of programs which simplify and abstract the 

architecture interface so that the work of programming the computer can be 

divided among programmers of various disciplines. 

What happens at the layer below the instruction set architecture depends on the 

specifics of the implementation. At this lower layer every single bit of 

information is explicitly manipulated using transistors. These transistors will be 

composed to create logic gates, and transistors and gates will be combined to 

implement the desired functions. During the design phase a synthesis program 

or engineers will draw these circuits, and should they pass logical and timing 

tests, the transistors will be drawn to size, given places where they will appear 

on the substrate, and have lines drawn between them to ‘wire them up’. In the 

current era of computing, these designs will be realized on silicon chips. 
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Hence the instruction set architecture is a nice vehicle for communicating just 

enough information to compiler writers that they may port their tools, while also 

not conveying a lot of extra information that would be difficult for a non-

specialist of hardware design to understand, and in any case would be irrelevant 

to programmers. 

Given two sufficiently expressive instruction set architectures for machines, say 

A and B, it will be possible to write an emulator program using instruction set 

A, where this emulator can read and run programs that were written using 

instruction set B. Such an emulator might be very useful if a person does not 

have in their possession hardware for instruction set B. Indeed it might even be 

the case that instruction set B was never intended to ever be implemented in 

hardware. For example, when instruction set B is Java byte code, which by its 

very design was intended to be emulated. 

Alan Turing published his computing machine abstraction in 1937 as part of, 

“On Computable Numbers With an Application to the Entscheidungsproblem” 

DOI 10.1112/plms/s2-42.1.230. His objective was to embody the meaning of 

‘algorithm’. He used the Turing Machine as a tool to answer a question posed 

by Hilbert in 1928 as to whether an algorithm exists that can generally decide if 

a given logical statement is provable. Turing showed that in so far as algorithms 

are defined in terms of programming his machine model, that no such algorithm 

for generally deciding if statements are provable can exist. This was an 

earthshaking result. Although it was not the first result to show limitations for a 

system of logic. Gödel’s Completeness theorem was published in 1929, and 

Russel’s paradox dates to 1901, with a similar observation by Zemelo a couple 

of years earlier. 

Turing’s machine is truly simple. It consists of a tape, a read-write head, and a 

state machine controller. The state controller chooses its next state based on the 

value under the head, and then it may choose to write a new value to tape, or to 

take a step. The Turing Machine becomes a true computer when the state 
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controller is designed to read a description of Turing Machine logic from tape 

and then to execute that. The controller description found on the tape is a 

program encoded as data. Such a ‘Universal Turing Machine’ can emulate any 

other Turing Machine, thus showing that a Universal Turing Machine is 

programable. 

Simpler models for computation are possible, as examples: finite state machines 

by themselves, or a state controller combined with a stack instead of a tape. 

However, such simplifications come at the cost of reduced expressiveness. I.e. 

there are some problems that Turing Machines can compute solutions for, which 

these other machines cannot.  

More complex models also exist, as examples: machines with multiple heads, 

multidimensional tapes, or even those that employ multiple co-operating Turing 

Machines. Yet these more complex machines are not computationally more 

expressive. Any problem that these machines can compute solutions for, so can 

a Turing Machine. So it appears that the Turing Machine is as simple as we can 

make a computing model without diminishing its functional expressiveness. 

When another machine model can compute the same set of problems as a Turing 

Machine, we say that the other model is Turing complete. 

The infinite tape of the Turing Machine does not intimidate engineers. Some 

engineers have brushed off this detail to create realizations that are the same 

except that they have very long tapes instead of infinite ones. Engineers justify 

doing such a thing by pointing out that it takes a long time for computers to use 

a lot of memory, so we will probably never see the difference. Yet no matter 

how long the tape is made, i.e. how much memory is in a system, some 

calculations do hit the end of any tape. When this happens the engineers explain 

to us that the problem is a ‘memory fault’. 

If we had an engineer’s Turing Machine realization, the first thing we would 

discover is that it is tedious to program. The instruction set architecture gives us 

no preconceived data types, not even integers, nor any instructions that 
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accomplish arithmetic tasks. Another thing we would notice is that it does not 

do much on each step. Whereas a conventional processor might add two fixed 

width integers in a single step, a Turing Machine will take many steps to do this 

same. 

Typically in order to keep our lives simple when we are faced with programming 

a Turing Machine we use unary representation for integers. Accordingly the 

numbers 1, 2, 3, would be something like ‘s’, ‘ss’, ‘sss’. The ‘s’ represents our 

successor function from Peano arithmetic. We then may write a program library 

with some useful functions. For example, to increment an integer the program 

looks under the read-write head, if it sees an ‘s’, it steps right. If it doesn’t see 

an ‘s’ then it writes an ‘s’ and halts. In this manner the string of ‘s’ symbols gets 

longer by one. We might then write subroutines to perform all the instructions 

found in a more conventional instruction set architecture, and in this manner 

construct an emulator. 

When we try to write programs of any complexity with our new emulator, we 

run into a problem that is at a higher order of computation than the arithmetic 

itself: How can we make a memory map of variables that hold variable width 

data? Say we wanted to compile a program and place three integer variables 

next to each other on the tape. Then we would discover that if one of the 

variables grew in width, it would walk into the memory that was allocated for 

its neighbor and clobber its value. 

Along comes our engineer, and he has a practical fix for this problem. He notes 

that if we instead use Arabic representation, numbers will grow very slowly 

while they are incremented. Hence, he concludes that it will be sufficient to 

replace the need for an infinite allocation space for each integer with a large 

fixed width one. We call such a large fixed width allocation for our basic integer 

type a word. In addition our engineer will ask, how high does a person need to 

count anyway? 
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But what happens in the highly unlikely case an integer does get too big to fit 

in one word of allocation? One possibility is that we call such an unlikely event 

an ‘exception’ and then stop the program. This exception is called ‘integer 

overflow’. Another possibility is to saturate at the maximum value. More 

recently it has been proposed that we instead substitute in a special bit pattern 

that will be interpreted to stand for infinity and then keep computing. Today 

most computers will simply wrap back to zero and keep going as though nothing 

happened. But computers often have important jobs to do. It is not unimaginable 

that such a computer would be controlling a rocket, and then the rocket loses 

control and blows up, or something even worse could happen.  

There is one more solution to the exceptional case of integer overflow which 

has recently become popular in interpreted languages, and that is to use 

bignums. Accordingly, when the integer gets too big we either move it, or place 

its pieces into a data structure such as a linked list. Both solutions typically 

require that we have something called an ‘address’ that can be used to locate our 

integer or integer pieces. 

In terms of a Turing Machine tape, an address is the offset from the first tape 

cell. We may generate addresses by counting the steps taken while a machine 

simply steps right repeatedly. Thus an address is an integer, and the bignum 

solution does not solve the integer overflow problem, it just displaces the 

problem from our bignum integers to our address integers. This is fine with 

engineers, because they have now moved from 32 bit addresses to 64 bit 

addresses. 

If we modify our engineer’s variation on the Turing Machine by adding libraries 

or hardware for handling fixed length integers and use addresses for accessing 

the tape, then we get close to a modern instruction set architecture. 

Since the beginning of computing we have lived with the simplification that 

integers fit in fixed width words, and consequently have also lived with 

otherwise perfectly good programs terminating with exceptions. The problem 
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typically gets worse during the transition to a new technology node when 

performance reaches a new plateau not imagined as being possible just a short 

time before. We might be nearing such a technology node now by moving to 

quantum computing. 

Is there a point where the engineer’s solution will finally be sufficient?  We live 

in a finite universe, and address spaces grow exponentially as we add more bits 

to addresses. There are approximately 2ଶ଺ହ protons in the universe. Hence with 

a 265 bit address, we could give every proton an address. Surely no memory 

would ever be made that large. An architecture using 265 bit fixed width 

addresses would never signal an address space is exhausted fault while running 

real programs, because any real program would have had an out of physical 

memory fault before that could happen. However such an argument must be 

taken with a grain of salt, because the same argument form was used to justify 

using 32 bit addresses as the end all solution, and they are now being used to 

justify 64 bit or 96 bit addresses as the end all solution. 

One possible hitch is that OSs tend to reserve blocks of address space. It is 

conceivable that an OS designer would create an address space management 

algorithm that is so inefficient, that despite memory being available, the OS still 

would not be able to map it even with 265 bit addresses. Also, with so many 

address bits the temptation is strong to instead use the addresses as associative 

keys or as content holders for a content addressable memory. (With content 

addressable memories large address widths are used for sparsely addressing 

relatively small memories so as to achieve searches with performance on the 

order of hardware decode circuit times.) As another possibility, we might soon 

have to deal with state explosions in quantum computers, so perhaps we really 

will need all those bits, and more, as conventional addresses. 

Independent of those possible scenarios, there is a here and now problem with 

using lots of bits to safeguard the fixed width data assumption. Namely that 

large fixed width values are an inefficient way to allocate memory. Addresses 
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might be large numbers, but they still tend to congregate around a base value, 

i.e. indexes are typically small. The typical integer in a program does not exceed 

12 bits, but it will be allocated in 32 or 64 bit words. If we did not waste this 

space, caches could have higher hit rates, we could afford to run more threads, 

and we would get more work done with a given amount of system memory. 

And we have not even touched on the issues of floating-point representation. 

All this raises a question, is the fixed width assumption necessary for practical 

computing?  

In computation theory we often use ‘pumping’ type proofs to show that a 

particular machine is not Turing Complete. The idea is that we show some 

problem that a Turing Machine can solve independent of the length of input, and 

then we prove that for any solution on the non-Turing Complete machine that 

there will be a given length of input that is so large that the machine breaks and 

cannot solve the problem. 

Take for example, suppose that our input is a series of the symbol ‘a’ followed 

by a series of the symbol ‘b’, and we want the machine to tell us whether or not 

the number of ‘a’ symbols is equal to the number of ‘b’ symbols by printing a 

‘y’ or a ‘n’ on the tape. 

♦ 

  ε y  empty string 
ab y same number of a and b 
a n fewer b 
b n fewer a 

aaaaabbbbb y same number of a and b 
aaaaabbbb n fewer b 

aaaaabbbbbb n fewer a 

This is an easy problem to solve on a Turing Machine. The controller moves the 

head to the ends and trims off one symbol from each of the strings of ‘a’s and 

‘b’s. If the ends meet the controller writes ‘y’, otherwise it writes ‘n’. If we 

consider that each of the strings is a unary number, then these operations can be 
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thought of as subtracting 1 from each number and expecting both numbers to 

become zero on the same iteration. 

Now suppose we instead of a Turing Machine, that are input is fed to a finite 

state machine. We can have a series of states that stand for one ‘a’, two ‘a’s, 

three ‘a’s, etc. Each state in the series of ‘a’ states would have a ‘b’ arc leading 

into the series of ‘b’ states that regress back, two ‘b’s, one ‘b’ and if the string 

ends with us on the initial state we know the ‘a’s and ‘b’s strings were equal in 

length. The problem is that we will only have a fixed number of states in a finite 

state machine, so there will be a bound to how many ‘a’s and ‘b’s that can be 

counted. 

We can discover the limitation of the state machine solution by pumping the 

input. First we give the machine length one strings, then length two strings, etc. 

At some point the machine will attempt to go past the last ‘a’ state and go to a 

failure state. 

Now let’s consider our engineer’s solutions for the unbounded memory 

problem, the address space problem, and the problem of creating a memory map 

for variable width variables. All those solutions will break as various aspects of 

computation are pumped. We will get a fault after using all the memory. If we 

are swapping pages back to the hard drive of sufficient size we will get a fault 

when we run out of address space. If we have integers and the program makes 

them grow as it runs longer, as the input gets longer, there will eventually be a 

numeric overflow. 

When modern instruction set architectures are used in the manner they were 

designed to be used, we cannot arbitrarily pump input lengths without things 

breaking. I.e. using the add instruction to perform addition will lead to 

overflows, load instructions accept address operands of fixed width, and the 

address translation system for the VM will only be able to handle a fixed number 

of page translations. It is for this reason that I would say that today’s instruction 

set architectures are not Turing Complete. 
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But can we use our instruction set architecture to write a Turing Machine 

emulator? If so, then the instruction set architecture is Turing Complete, as the 

emulator can do anything that a Turing Machine can do. Theorists put no weight 

on a metric such as ‘what it was designed to do’. 

Any Turing Machine emulator approach must address how we are going to deal 

with the infinite tape. A simple approach is to put the processor in the position 

of being the state controller, and for external storage to be the tape.  

Say we use an actual magnetic tape transport as the secondary storage, and then 

say it is not the processor’s fault if we hit the end of a very long tape. Real tape 

storage we will run into faults when pumping that are not related to hitting the 

end of the tape. Tape storage mechanism use formatted tapes, and tape 

controllers support seek commands that accept address operands. At this point 

we can wave our hands and imagine a special tape drive and controller. One that 

has been designed for our purposes. This simplified device only accepts step 

right, step left, and read and write operations. It is OK for us to wave our hands 

and do this because it would be possible to build such a tape drive.  

This setup is nice in that the only fault will be that of physically running out of 

tape. We can wave our hands and imagine that we always add more tape. 

However, this is also a lame proof. It is hard to imagine an instruction set 

architecture that cannot emulate a finite state machine. In addition most all of 

the features of the given instruction set architecture will not be used. The 

message that an instruction set architecture is Turing Complete as determined 

by using this set of assumptions carries little or no interesting information. 

The remainder of this volume is about an instruction set architecture where, 

even while using the instructions in the instruction set, the only faults will be 

due to program design, the properties of mathematics, or due to real resource 

limitations. This instruction set architecture is Turing Complete due to the 

features of the instruction set itself, rather than being in spite of it. 
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The material in this chapter owes a great deal to, Elements of the Theory of 

Computation by Harry Louis and Christos Papdimitriou, ISBN 978-

0132624787.  

However in this volume we are not exploring the nature of computation, rather 

we are going in the other direction. We are trying to work our way up from 

computation theory to arrive at a practical computer architecture.  Towards this 

end we start with a definition for the Turing Machine that itself resembles a 

computer architecture specification. 

♦ 

Accordingly, our Turing machine consists of a: 

1. fixed finite alphabet 

The TTCA Turing Machine 
variation 

 

Figure 1 A Turing Machine 
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2. fixed distinct empty-symbol 

3. variable single ended tape  

4. variable read/write head 

5. variable read value buffer 

6. fixed state machine controller 

7. fixed left from leftmost error 

8. fixed start-state 

9. fixed halt-state 

10. variable current-state 

11. fixed procedure for using these. 

 

The values assigned to the variables are not part of the definition. 

A symbol may be any mathematical object for which there may be multiple 

instances, where within a given context, instances compare to be equal among 

other instances of the same symbol, but compare not equal to instances of other 

symbols. As a matter of convenience in this document, I use sequences of letters 

and/or digits for symbol instances.  

The alphabet is a finite set of symbols.  

The distinct empty-symbol may be any symbol that is not found in the alphabet. 

Like alphabet symbols, this symbol may appear in the tape sequence. 

Only instances of alphabet symbols or the empty-symbol may be written to the 

tape. Intuitively we might consider that the alphabet symbols are useful while 

the empty symbol is just taking up space while waiting to be displaced, in the 

same manner that we consider a bookshelf to be empty rather than being full of 

air. (And if we put a bookshelf underwater is it still empty, or is it full of water?). 
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The tape is an infinite sequence. We say that the first element in the tape 

sequence is the leftmost element. The second element in the sequence is then the 

right neighbor of the leftmost element. Etc. this nomenclature is drawn from a 

left to right writing convention for sequences.1 The leftmost element has no left 

neighbor, but it does have a right neighbor. All other sequence elements have 

both a left neighbor and a right neighbor. A Turing Machine tape has no 

rightmost element because it is an infinite sequence.  

We notice three special subsequences: 

1. a first, leftmost, element which is either an alphabet symbol or the 

empty-symbol 

2. optionally this is followed by a sequence extending to a rightmost 

alphabet symbol 

3. if the second subsequence is finite, it is followed by an infinite sequence 

of empty-symbols.  

 

So as to distinguish this tape partitioning from others found in this volume, we 

give it the name, the 'Leftmost Rightmost Partitioning', because it emphasizes 

the location of the leftmost element (alphabet or empty) and the rightmost 

alphabet element. 

It is because of this third subsequence, the infinite tail, that the empty-symbol 

became distinct from the alphabet. There is no way for a Turing Machine to 

compute an infinite empty tail, so such a tail must come from somewhere else. 

Here, we provide it by definition.  

Putting together the first two subsequences noted above gives us the active area. 

If there is no alphabet character on the tape, then there is no active area (i.e. the 

 
1 Later we will add addresses, and the tape then will have a number line under it, where the leftmost 

cell has a zero under it, the right neighbor has a one under it, etc. For writing systems that progress 
from right to left, or even up and down, we will want to maintain a convention that keeps the 
addresses increasing in the positive direction for a number line. 



13 

active area has length 0). The infinite right going tail of cells holding the empty-

symbol is then the inactive area. 

The initial active area provided to a Turing Machine is called the input. The final 

active area, obtained after the Turing Machine halts, is called the output. If the 

input has been computed solely from another Turing Machine, then that input, 

will necessarily be finite in length. If the input is provided as a general 

mathematical object, perhaps even one abstracted from 'what a Turing Machine 

computation would produce if it ran to an infinite limit number of steps', then 

the input may be either finite or infinite. 

The read/write head indicates2 one of the elements in the tape sequence. The 

head is not a Natural Number as you are probably accustomed to for sequence 

element indexes. Such a definition would be circular because later we use a 

Turing Machine to define Natural Numbers and the concept of an address. 

Instead, we can think of the head as partitioning the tape into two subsequences. 

We will call this the 'Head Centric' partitioning. The first subsequence extends 

from the leftmost element up to the indicated element, inclusively. During 

computation this first subsequence is necessarily finite. We call it the left-hand 

side. The second subsequence holds the rest of the tape. We call it the right-

hand side.  

To step the head to the right we remove the leftmost element from the right-

hand side, and then append it to, i.e. make it the new rightmost element of, the 

left-hand side. To step the head left, we remove the rightmost element of the 

left-hand side, and prepend it, i.e. make it the leftmost element of, the right-hand 

side. In the section, Addresses and cells , we will justify using the term cell in 

place of element, and then we will be able to say such things as the cell that the 

head is on, or the indicated cell. 

 
2 Computer people have a habit of using the word 'indexes' in place of the word 'indicates'. 

Accordingly they might say that an index variable indexes a value in an array, instead of saying that 
the index variable indicates a value in an array. 



14 

The controlling state machine is a graph. It may be either a Mealy or Moore 

style state machine graph, as these are equally expressive. Only the fixed 

procedure would change. We describe a Moore style machine and 

corresponding procedure here. The graph is a set containing three elements: 

1. set of states 

2. set of <state, command> pairings 

3. set of arcs 

 

A state is a symbol. Instances of state symbols appear in a different context than 

those of alphabet symbols or the empty-symbol, and thus they do not need to be 

distinct from them. 

Each state has a command attached to it, <state, command>. Each state appears 

in exactly one such pairing. We have a fixed set of commands: { do-nothing, 

step-left, step-right, and write(value) }, where the value parameter is 

set when the controller is defined. value must be an instance of an alphabet 

symbol or an instance of the empty-symbol. In addition, we should not forget 

the implied read command that returns a value from the tape, and is used by the 

fixed procedure. 

The arcs are triples of symbols, <from-state, to-state, value>. The from-states, 

to-states, and values are set when the controller is defined. The value is an 

instance of either an alphabet symbol or the empty-symbol. We require that for 

each from-state that there exists exactly one arc for each member of the 

alphabet, one for the empty-symbol, and for states with a step-left command, 

that there be one arc for the left from leftmost error. Arcs can be dropped from 

diagrams if we can prove that they cannot be used. As a notational convenience 

we might also reduce the work of listing so many arcs by adopting the 

convention of explicitly providing only unique arcs, and then saying the rest of 

the arcs are identical to a default arc or an error arc. 
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Here we present the fixed procedure in the form of a main procedure and two 

subprocedures, 'Initialize', and 'Take a Step'. To perform a computation follow 

the steps in Main, and its subprocedures, until being told to halt: 

♦ 

We initialize the machine by instantiating the input on the tape, putting the head 

on the leftmost element of the tape, and setting the current state to the start state.  

We take a step by first reading the symbol under the head and storing that value 

in our read value buffer, executing the command associated with the state, and 

then following the arc selected by the element we read. We must read the 

element before executing the command, because the command might perform a 

write to the cell. Consequently, as part of the Turing Machine definition we 

picked up the buffer for holding the read value. 

Deterministic (Uniplex) Procedure 

Initialize: 

1. place the input on the tape 

2. place the head on the leftmost element 

3. set the current state to the start state. 

 

Take a Step: 

1. read the symbol instance indicated by the head 

2. execute the command corresponding to the current state 

3. select the arc that has a from-state that matches the current-state, and a 

value that matches the instance just read. Take that arc's next state and make 

it the machine's next state. 

4. make the next state the current state. 

 

Main: 
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Walking through this procedure is variously known as running the machine, 

performing a computation, evaluating the input, evaluating the function, or 

simply as computing.  

Note that while walking through this procedure we are always in exactly one 

state. This is because we required that there be one arc for each letter in the 

alphabet, empty-symbol, and possibly the left from leftmost error. We say that 

this property means that the machine is deterministic.  

To create a non-deterministic machine we allow multiple arcs to have the same 

read value as a second member, and we modify the second step of the procedure 

to follow all arcs that have matches with the symbol returned by read. When 

we do this we might find that zero, one, or many of the arcs are followed in one 

step, and thus that we may have zero or more next states. Conceptually each of 

these states corresponds to a separate machine head with its own read buffer. At 

the end of the step we rename our next state set to be the current state set. Should 

the halt state ever be placed in the current state set, then we halt the machine. 

Should the current state set become empty without every having reached a halt 

state, we say the machine has failed. 
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♦ 

As reviewed by Papadimitriou, such non-deterministic machines can be 

converted to deterministic ones. This is done by calling each unique 'state set' a 

state. You might recall from our definition of symbol, that we can use any 

mathematical object for which instances are comparable. That includes sets. 

When two current state sets have the same members, we say they are instances 

of the same state. When they have different members we say they are different 

states. Hence existence proofs on non-deterministic machines will turn out the 

same as for deterministic ones, but the non-deterministic machines might 

require fewer steps to evaluate. 

Non-Deterministic (Multiplex) Procedure 

Initialize: 

1. place the input on the tape 

2. for each start state place a <start state, head location on leftmost> pair in the 

current state set 

 

Take a Step: 

1. For each <state, head-location> member of the current state set: 

1.1. read the symbol instance from the corresponding head location 

1.2. execute the command corresponding to the state 

1.3. for each arc match, add a <next-state, head-location> pair into the next 

state set 

2. for each arc match, add a <next-state, head-location> pair into the next state 

set 
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If we keep a trace of execution through a non-deterministic machine, and then 

walk backwards from each halt state, we find paths through the state machine, 

that, had we taken one of these paths, the machine would have reached the halt 

state. Had we known such a path in advance we could have saved ourselves 

from doing the work of following the other paths. This is why such machines 

are called 'non-deterministic' – we don't know which of the paths we are 

following while running forward will be the path that leads to the halt state first. 

We might arbitrarily pick a path, then we would have some probability of 

eventually hitting the halt state. 

But notice, that the conversion algorithm going from a non-deterministic 

machine to a deterministic machine is forward moving. It starts by giving the 

initial state set a state name, and moves forward by giving each unique set of 

states a state name, until hitting the halt state. No stochastic variables, or 

“guesses” are involved. Note also, when we run a non-deterministic machine 

we do so in a deterministic manner. There are no stochastic variables involved.  

Hence, what is non-deterministic is an interpretation rather than the machine 

definition or anything we are asked to do while walking through the fixed 

procedure. So as to avoid any confusion due to this nuance, I am going to 

introduce a different term for non-deterministic machines. I am going to say 

they are multiplexed. Should the need arise to emphasize that a machine is not 

multiplexed, I will say such a machine is unixplex. This new nomenclature is 

especially helpful when discussing the TM Library code, where the 

multiplexing of heads is readily apparent. 
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Turing Machines that halt in finite number of steps for any finite input are 

computational. I.e. for any given non-computational Turing Machine there will 

exist at least one input for which computation will never complete. By analyzing 

a machine we might learn that some machine, say M, is conditionally 

computational on a given set of inputs, say I. Then in case of the strongest 

delineation, computation will not halt for members of I, or it might be the case 

that we don't know about the inputs in I, or that I analysis shows that I can be 

broken into two sets, inputs for which computation will not stop for, and those 

for which analysis does not provide an answer. 

To analyze a given First Turing Machine we do not execute it, but instead we 

place its definition on the tape as input for a second Turing Machine to analyze. 

We might also add on the input tape to the first Turing Machine another Turing 

Machine that defines the language input to the first Turing Machine, otherwise 

we have to assume that any input is possible.  We then run this analysis Turing 

Machine so as to learn about the first one. (It is often the case that this second 

Turing Machine which performs the analysis is in a person's brain. Perhaps the 

person is writing a proof about the Turing Machine that is being studied.) 

Analysis can be applied to both computational and non-computational 

machines. In many cases it is possible to learn something useful about a non-

computational machine, one which we cannot evaluate, by analyzing it. 

The term 'analysis' can be applied more generally. Accordingly, 'first order' 

analysis is the same as computation. ‘Second order’ analysis is what was 

described in the prior paragraph. When the term 'analysis' is used without further 

qualification, the order is implied by context, but typically we are referring to 

second order analysis. It is possible to perform higher orders of analysis. Here 

Orders of analysis
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is a question that belongs to the next higher order: does there exist a Turing 

Machine A that can analyze a Turing Machine B to decide if B will always halt? 

We are standing above looking down and asking a question about machines of 

the second order. 
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Natural Number, address 
We can define a Turing Machine that is identical to the recursive definition of 

Natural Numbers as given by Peano. As the Natural Numbers never end, we 

cannot run this machine to a halting point, but we can analyze it. As such we 

can assign a Natural Number to each member of the tape sequence. We will call 

the machine that does this the address machine. 

Since multiple tape Turing Machines are equivalent to a single tape Turing 

Machines, we begin with the simplification and say that our address machine 

has two tapes. One we will call the main tape. We will assign addresses to the 

elements on the main tape. The second tape we will call the address tape. It is 

initially empty. 

The controller makes use of our increment routine for unary numbers which we 

described earlier. We begin with the main tape head on the leftmost element. 

The address tape reads zero, this is the address for the leftmost element. The 

controller then steps the main tape head right one element, and it runs the 

increment routine on the address tape. The address tape then reads ‘s’, i.e. one. 

This is the address for the right neighbor of the leftmost element. We then repeat 

this procedure while assigning addresses to each successive element, two, three, 

four, etc. We call the set of addresses created in this manner the ‘Natural 

Numbers’. 

Though we can never run this machine to the point where it halts, we may 

analyze the Natural Number machine and reason about it. As one example, we 

can take a first given Turing Machine with it’s head somewhere on a tape, 

encode that machine and its state, and also encode an address machine, and 

Addresses and cells
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provide these two machines to a third machine, one called address-of. The 

address-of machine can then run the address machine while stepping the head 

left on the first given machine. At the point where the next left step would cause 

a left of leftmost error, the address will appear on the address tape of the address 

machine. 

Distance 
The distance between two elements is defined to be the difference in their 

corresponding addresses. 

Area and length 
An area is a subsequence of cells on a tape. An area may be defined using two 

addresses. The first address being that of the leftmost cell in the area, and the 

second address being that of the rightmost cell in the area. 

The length of an area is one greater than the distance between the address of the 

leftmost cell of the area, and that of the rightmost cell of the area. Hence the 

smallest length that an area may have is 1. This occurs when the address to the 

leftmost cell is the same as the address to the rightmost cell, i.e. when there is 

only one cell. 

The concept of area may be abstracted to include a set of cells that share a 

property. This might be a property of the values in the cells, or a property of the 

addresses of cells. An abstract area can be colored by a property detecting 

machine. Such a machine would start at the leftmost cell, check the value in that 

cell for the given property and mark it accordingly. It would then step right and 

repeat. For such a marker machine to be computational there will have to be a 

leftmost cell in the area, and upon finding a leftmost cell in the area, a rightmost 

cell will have to exist. Without either of these a marker machine will never halt. 

Even if a marker machine might not halt, it still might be useful for analysis.  

Such marker machines that color based only the value found in each cell are 
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context free.  Abstract areas may also be defined based on functions of cell 

values that include context.    

When the cells in an abstract area are contiguous, we say that the area is 

compact. An example of an area that is not compact is that of the odd addressed 

cells. The odd and even addressed cells of a tape form two non-overlapping 

abstract areas. Given a cell in either of these areas, its direct neighbors will not 

be in the same area. 

Zero length is a second order concept 
Suppose we have a Turing Machine that is designed to mark an area based on 

some property of the symbols. Suppose further that starting with the head on the 

first cell, our Turing Machine will step right zero or more times until it finds a 

cell that holds a symbol that has the special property. Once it finds such a cell it 

will write an area marker symbol to that cell, step right, and repeat writing area 

marker cells until it finds a cell that holds a symbol that does not have the area 

property. At which point the machine halts. 

Once an area is marked, we can go back and run a length measuring machine 

that counts the sequence of marks. We will call this the length of the area. 

Now suppose we employ a second order analysis. Instead of running our area 

marker Turing Machine, we examine its definition and the definition of the 

machine that generated the tape data, to learn if such a machine will ever halt. 

Although we know that it is not possible in general to analyze machines to know 

if they will halt, or not, it is certainly possible to do so in some cases, and this 

is one of those cases. Upon analysis of our area marking machine we make a 

startling discovery – inputs exist for which the area marker will never halt. In 

one case, if there is no leftmost symbol with the property that defines the area 

we are looking for, the marker machine will search forever. In the second case, 

once the area is found, it is open on the right and it never ends. 
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We might say that inputs that have no leftmost symbol have an area of zero 

length. This an abstract concept, because our area marking and area measuring 

machines will never be run then halt and return a length measure of zero. Instead 

we might arrive at this conclusion that a non-existent area has zero length 

through inductive reasoning: Say we have an area of length i, and then remove 

one element from the area, then it has length i-1. As we repeat this, then 

eventually we will have an area of length 1 as discovered by our length assigning 

machine. Now we remove 1 more element. Each time we removed an element 

before, it made the length smaller by 1, so we reason that 1-1 = 0. The area is 

now length zero. We cannot go any further because there are no more elements 

to be removed.  

In this case we arbitrarily imagined a longer area. No such longer area was stated 

in the problem formulation. In real world programming, this is the difference 

between having a container that by implication will hold elements, and not even 

having the container. By applying the limit logic, we have implied that an area 

exists. If running the area maker machine is asserting the existence of such an 

area, then it makes sense to speak of a zero length area. However, if we are not 

making this assertion, then there is no area so the issue of length is irrelevant. 

This is a nuanced problem. 

Note, then, that zero length is a second order concept. We cannot mark nor 

measure it, and given our first order definition for an area, nor can we even 

represent such an area at a first order. There must be some external structure 

present that implies the existence of the area for zero length to even make sense. 

This insight explains a lot of the pain related to the processing of end cases in 

computing. It will come up again in this volume when we examine the question 

of the emptiness of containers, see the section . It also explains why loops so 

often need to be primed or given special case guards – which is the same as 

adding a layer of analysis. We will discuss this further later when introducing 

the first-rest pattern see, . 
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It is interesting that non-existence has collided with zero length. This seems to 

be a contradiction, as something that does not exist should not have any length 

at all. All of this happens at the second order, at the order of analysis. At this 

order we can make a distinction between an area that we have given a name to, 

and perhaps a location, as compared to an area for which we have done neither 

of these things. Thus for purposes of second order analysis we will say that an 

area exists if it has a name or a location, even if it has zero length. We will say 

an area does not exist if it has neither a name or a location. Again, execution of 

our first order area marking and length machines cannot provide us with any 

such information. 

Need for the concept of cell 
Let us ask a question, what is it that an address is actually locating? Let us 

consider this question in the light of an example. Suppose we have the tape 

sequence of:  

  a, b , c, ε, ε, ε …  

Now consider that we have an address of '2'. If we read tape address 2 we get 

back the letter 'c'. So the address is locating the 'c'. Now suppose we write at 

address 2. Say we write 'γ'. Now our sequence is: 

  a, b , γ, ε, ε, ε … 

Now we write 'Г', resulting in the sequence: 

  a, b , Г, ε, ε, ε … 

It would appear that the answer to our question is that address 2 is locating 

different things at different times. First it was, c, then γ, then Г. Yet the address 

did not change. It feels a little unsatisfactory to suggest that our concept of 

location depends on the value addressed. Also, notice, that when we created the 

Natural Number Turing Machine, that the values on the tape that was placed 

into correspondence with the Natural Numbers were never mentioned. Yet, we 
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can't seem to answer the question of 'what is being addressed' without giving a 

value. 

Addresses speak to the structure of the tape rather than the values held on the 

tape. So as to facilitate this interpretation, we note that a sequence consists of a 

sequence of cells holding elements, rather than being just a sequence of 

elements. Given the concept of a cell we can say that an address always locates 

the same cell, though the contents of that cell can change.  

This is only a small extension to the already existing concept of a variable in 

mathematics. In mathematics we allow that a variable can take on different 

values, though its name never changes. Now we are going to say that a cell can 

take on different values, though its address never changes. Furthermore, as the 

cell is part of the sequence, we are going to say the cell itself has a left neighbor 

or right neighbor – not the value in the cell. 

Address of an area 
The address of a cell is the number of steps required to reach the cell when 

starting from the leftmost cell on the tape. The leftmost cell has an address of 

zero. It might seem intuitive to set the address of an area on the tape to be that 

of the first cell in the area. If we require that an area have at least one cell to 

exist, this approach works even for machines with a cell delete command.   

Suppose that we are deleting the cells in an area.3 The delete command affects 

the cell to the right of the cell the head is on.4 Hence to delete all the cells of an 

area, the head is placed on the left neighbor cell to the area. Say that we delete 

an area of three cells. We will call delete three times. It seems unsatisfactory to 

say the area no longer exists after the three deletes because the head locating the 

 
3 For finite tape up to the rightmost alphabet symbol we can emulate the deletion of cells on the 

conventional Turing Machine by moving all the instances in cells on the right-hand side to their left 
neighbor cells.  

4  The reason for this is that we can't delete the cell that the head resides on as that would break the 
machine. I chose this convention over other possibilities that required moving the head, as those 
potentially invoked an error for moving the head off of the end of the tape. 
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area never moved.  I.e. we still have a location marker for the area, so we could, 

for example, call append and put a cell back into the area.  For the area to truly 

not exist, it would not have a location.  Thus it seems more satisfactory to locate 

an area by its left neighbor cell, than to locate it by its leftmost cell. 

The inverse case also suggests that the cell to the left of an area defines its 

address. I.e. if we call append to grow an area, it grows to the right of the cell 

the head is on. According to this definition of area location, the rightmost cell 

locates a currently zero length right tail of the tape that will potentially be 

grown. 

In a sense what we are doing while exploring the meaning of area, existence, 

and zero length with these delete and append examples is performing a discrete 

limit in analogy to a limiting operation in calculous. To support having such a 

limit operation, the location of an area is that of the left neighbor of the leftmost 

cell in the area. 

Not all is satisfactory. When using the left neighbor of an area as the location 

for an area, we cannot locate an area that starts on the leftmost cell of the tape.  

If we make this a special case, then we have failed to create a first order 

definition for area, because the special case information will have to be stored 

in a higher level structure that describes attributes of the tape. 

Nor can this use the left cell approach work in the case of multiple areas. 

Suppose we have two adjacent areas. 

♦ 

Here we show a first area, say a0, that includes cells 7, 8 and 9. And a second 

area, say a1, that includes cells 10, 11, and 12. Thus, by the convention of using 

the address of the cell to the left of an area as the area’s address, a0 has an 

 

Figure 2 Tape with two areas 
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address of 6, while area a1 has an address of 9. Because the areas are adjacent, 

the address of area a1 is the same as the address of the rightmost cell in area a0.  

We know that area a0 is located to the left of area a1 because a0's address is less 

than a1's. i.e. 6 < 9. 

Suppose we delete cell 10. Though cell 10 is gone, our addresses remain 

consecutive, so what was cell 11, is now called cell 10, etc. and the diagram 

appears much as before, though area a1 is now only 2 in length:  

♦ 

Now we delete the cell at address 10 two more times, and all the area a1 is gone. 

During the deletion, and just after, the head will be on the rightmost cell of area 

a0, i.e. on cell 9. We can now say we have an area of zero length located at cell 

9.  

♦ 

Now suppose after deleting the area a1, as just described, we continue on to 

delete area a0. Each time we delete the leftmost cell of a1 the rest of area a1 

moves left by one. Hence, after the first deletion the address for empty area a1 

becomes 8. Area a0 is still located to the left of a1, because 6 < 8:  

♦ 

 

Figure 3 Step by step area two becomes shorter 

 

 

Figure 4 Second area goes to zero length 

 

Figure 5 Limit towards zero length being applied to the first area 
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Finally when all cells in area a0 have been deleted, a1 has collapsed into a0. 

Both have the address of 6, so the order between them can no longer be derived 

from looking at the base addresses. Should we attempt to reverse the steps 

above, and only be given the machine at its final state we would have to begin 

by guessing what the order was between the two areas, a0 and a1.  

So again, there is either missing information, or some information is not stored 

on the tape we are discussing. As yet another problem case that is either not 

possible or requires external information, if an area includes the leftmost cell of 

the tape, then its location cannot be described with an address. 

Hence this approach of using a discrete analogy to limits has led to some 

unsatisfactory end cases.  We will visit this subject of areas on tape in the 

section, Area as a mapped tape and present a higher order approach for 

defining area location that does not have such end cases.  (As a small hint, we 

use inclusive bound address intervals placed in a symbol table stored on another 

tape.) 
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Suppose we unmount a tape from a halted Turing Machine, say machine T0, 

and then mount the tape on another Turing Machine as input, say machine T1. 

Suppose we do this so that machine T may calculate the length of the output 

created by the first machine. When we do this, we run into some problems. 

Firstly, for a conventional Turing Machine, the tape that is mounted on T1 will 

be infinite, so no computational T1 machine will be able to process it unless 

there is a message on the tape telling T1 where the end of the input is.  For our 

TTCA machines, if T0 starts with a null tape, and then expands it, and T0 is 

computational, then at the time T0 halts, the tape will be finite.  T1 can then use 

the continuation of stepping beyond rightmost to know that it has processed all 

of its input. 

If a Turing Machine does nothing then halts, it will implement an identity 

relationship between input and output. If we do not want the input given to a 

machine to 'bleed through', we will have to erase it. A computational TTCA 

Machine starting from a null tape can only produce finite tapes, so T1 can erase 

whatever T0 writes to the tape.  However, if we are analyzing, instead of running 

the TTCA machine, we might discover that the tape length would be infinite if 

the machine could be run.  We know that if we pass an infinite tape to a 

computational TTCA, it would not be able to erase the tape.  Fortunately we can 

derive this fact through analysis and proof without having to run the 

computational machine to see if it erased the tape. Hence if we allow for infinite 

inputs, we should add an 'erase-to-end-of-tape' command to our machines, so 

that the computational machines may leave a tape with only their outputs on 

them. Our erase-to-end-of-tape command will be executed in a single step.   

Multiple machines and sharing tapes
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Once an input tape is mounted, the machine must  

1. T0 is a computational TTCA machine given a finite tape, its output is 

a finite tape, and that is taken to be the input for T1. 

2. T0 is required to provide meta information about the length of the 

active area. This approach is known as in-band signaling. Because 

length information is mixed with the data. 

3. T0 updates a dedicated table where it keeps track of the location of 

data objects and their lengths. Such a table is called a symbol table, 

and such a system is called a type system. This is written to a separate 

tape, or it is inserted at a known location on the main tape. In the case 

it is written to the front of the tape, the data following will have to be 

moved when the table grows. In the case it is written at the end of the 

tape, the table will have to be moved when the data grows. In  either 

case the symbol table entry lengths themselves must also be managed, 

typically they are either coded into the controller or make use of in 

band signaling.  It is conceivable that a symbol table would describe 

itself. 

4. We adopt a convention of maintaining a compact tape. As such we 

have no embedded empty-symbols in the active area. Then the empty-

symbol marks the end of the active area. 

5. Each machine has two tapes, an input tape, and an output tape. 

 

A compact area is one that has only alphabet symbols (no empty-symbols). We 

can extend this concept to say that the density of an area is the ratio of alphabet 

symbols to empty-symbols. 

The approach we use in modern computing is often the 3nd one listed above, that 

of the type system. We carefully account for the length of each instance of data. 

Then we build up each larger instance from smaller ones, and while doing so, 
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we add the lengths of the smaller instances to calculate the length of the larger 

instance. All programs then specify when they create or compose instances and 

their types. 

A system for creating the appearance of many tapes over a single tape is called 

a memory manager or a memory allocation system.  It is typically better to use 

one of these and multiple tape models rather than solving the problem of moving 

objects around in memory in an ad hoc manner.  

Here is an important question for the TTCA model: is it possible to create a 

memory manager that creates the appearance of multiple expanding tapes over 

the top of a single expandable tape?  This problem is solved for managing files 

on a hard disk.  However, all current file systems break at some point when 

pumped.  So the question being asked here is equivalent to asking if a files 

system can be made without such architectural limits.  The answer to this is yes, 

it is possible, as we will see in a later chapter of this book. 

Hence there are multiple conventions we may use for implementing the 

abstraction of multiple tapes on a tape machine.  Multiple tape machine are 

equivalent in power to one tape machines, but sometimes they are easier to think 

about.  

Now as we have multiple tapes it is fairly easy to show that having multiple tape 

machines is equivalent to having one machine.  We first view the multiple tapes 

worked on by the multiple machines as the multiple tapes of one machine.  We 

then compose the state controllers in series, where the halt state of one is the 

initial state of the next one. Thus we may also conclude that having multiple 

tape machines is not more expressive than having one tape machine.  We may 

also look at our multiple composed state controllers as one multiplexed 

controller, and then conclude that having multiple machines will not have an 

order of speed or space usage advantage.  
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The advantage of having multiple tape machines each perhaps having multiple 

tapes is that sometimes it is easier to think about. It is a method of partitioning 

the problem. 

Suppose our machines have two tapes where one is called the input tape, and 

the other tape the output tape.  Our procedure for passing tapes between 

machines will consist of umounting the tape from the source machine, then 

taking that tape over to the destination machine and mounting it as the input 

tape.  

 

Some properties of Turing Machines 
For a given Turing Machine, the input is the sole determiner of the output. I.e. 

each time the same input is given, we get the same output. The input and output 

are mathematical objects, hence Turing Machines are functions. However, it is 

common in computer science to speak of Turing Machines as 'solving problems' 

rather than saying they are functions. This is because we often think of the inputs 

and outputs of Turing Machines as being something other than mathematical 

objects. For example, when a Turing Machine sorts sequences found on its 

input, we might say that it solves a sorting problem. 

Turing Machines will differ due to differing alphabets, state controller graphs, 

associated commands, start, and halt states. The choice of empty-symbol is 

inconsequential as long as it is distinct from the alphabet. As we will see in the 

later discussion on variations, , the choice of alphabet is not very important. For 

two alphabets of the same cardinality we can create a one to one mapping, and 

for those of differing cardinalities we can use sequences of alphabet symbols 

that map to alphabet symbols. For example, given an alphabet of ‘T’ and ‘F’, 

and a second alphabet of ’t’, ‘f’, ‘x’, ‘z’ we may make the following map: 

♦ 
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Then given this mapping, we may use two cells for each one cell for any {‘f’, 

‘t’, ‘x’, ‘z’} alphabet machine, and then use the only the {‘T’, ‘F’} alphabet. 

There are a countably infinite number of permutations for alphabets, state 

controller graphs, associated commands, start and halt states, hence there are a 

countably infinite number of Turing Machines that fit our definition. However, 

there are an uncountably infinite number of mathematical functions. 

Consequently, we must expect that some functions cannot be computed with 

Turing Machines. 

There might be multiple Turing Machines that perform the same function. A set 

of such machines forms a functional equivalence class. Within a functional class 

there will be a class of members related in that they all use the smallest number 

of steps when considered against the limit of input length. We discuss this 

further in the section on complexity, . 

Of special importance to computation theory is the existence among all these 

infinite Turing Machines of a class of machines that read their state controller 

definition from the tape as an input. This is the Universal Turing Machine class. 

f FF 

t FT 

x TF 

z FF 
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An interesting aspect of the Turing Machine procedure is that it introduces the 

concept of stepping the machine. With the addition of some simple constraints 

it becomes possible to map the parts of the Turing Machine abstraction to the 

parts of some real machines. These constraints may take the form of such things 

as bounds on the length of the inputs, or the addition of out-of-resource errors. 

Because such constraints do not affect the 'normal' workings of the machine, the 

derived relationship between a Turing Machine step, and that of a unit of real 

time might not be that complicated. Indeed, except for some enumerable cases 

this relationship might even be so simple as to assign to a step an approximately 

constant amount of time. Because of the existence of a relationship between 

steps and time, particularly when it is a simple one, it is very interesting for us 

to know how many steps a Turing Machine will take. 

There are many ways to measure the complexity of a Turing Machine. Among 

these is something called the time complexity, which is a function that relates 

the length of the input to the number of steps required to reach the halt state. To 

derive time complexity we typically start with a step count formula which maps 

the length of Turing Machine input to the worst case largest number of steps. 

We then consider the behavior of this formula as input length goes towards 

infinity. To get this, we take the highest order term from the step count formula. 

Conventional results are constant time, polynomial time, or exponential time. 

We can derive the 'worst case length of the area written or read by the machine 

during computation' function in an analogous manner as for the step count 

function. This function is known as the space complexity. We may also consider 

the limiting behavior of this function to derive an order of space complexity. 

Performance Analysis  
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The order of time or space complexity will remain the same against certain 

variations of our Turing Machine definition. For example, if we double all the 

states by adding a second state that we always visit, where this second state does 

nothing, the number of steps would double but the functionality would not 

change. Order of complexity also would not change. A fixed time machine 

before doubling up on the states would still be a fixed time machine afterward. 

It is just that the number of steps would be twice as large, but still a fixed number 

relative to the size of the input. A polynomial time machine would still be 

polynomial time, just with double size constants. We say that changes which do 

not change order of complexity, nor existence proofs, are inconsequential. 

Suppose we have a complete Turing Machine functionality class. We say that it 

is complete because all possible machines for implementing the function are in 

this class. Some machines in this class will have a different order of time 

complexity than others. Now we consider the set of minimum order of time 

complexity machines from this class. As the larger set was complete, the set 

built against this constraint will also be complete relative to the constraint. We 

then say that this minimum order of time complexity is a property of the problem 

being solved, rather than being a property of a particular machine. 
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In the first section of this chapter we gave a rather conventional definition for a 

Turing Machine. In the prior section, Complexity, we noted that we can analyze 

Turing Machines to find their time and space complexities. In this section we 

will discuss some variations that one finds in the literature. 

A variation on the conventional Turing Machine definition is allowed when it 

can be proven that the variation never causes existence, order of time 

complexity, nor order of space complexity results to change, and in this respect 

is inconsequential. Earlier we gave the example of doubling up the states as 

being such a variation, though that is not a conventional variation. 

Open in both directions tapes 
Some Turing Machine descriptions describe a tape with no end in either the left 

or right directions, i.e. a tape that is that is open in both directions.  

This feature adds no richness of expression, because we can get the same 

behavior from a Turing Machine with a single ended tape. To do this we 

partition the single ended tape into odd addressed cells and even addressed cells. 

The odd cells are said to be the right side of the tape, and the even ones the left 

side. We then rewrite any tape controller based on a bidirectional tape to instead 

use the 'odd' and 'even' channels instead of the left and right sides of the tape. 

This same approach form can be used to show that multiple tapes, or even multi-

dimensional tapes, add no expressive power. The good news is that such 

variations can be used whenever convenient, and we will get the same results. 

Conventional Turing Machine 
variations 
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Going in the other direction, the open in both directions tape is not a 

simplification. There is still a start cell, being the cell that the head is initially 

placed on. And as noted above, the topology around this start cell is no different, 

it is just a question of the adjectives we use for describing it. 

Alphabet replacement 
Without loss of generality, we may replace the alphabet with a single symbol, 

say 's' (short for successor). This is because symbols in any alphabet can be 

placed into correspondence with a sequences of 's' symbols. For example, the 

symbols of the alphabet of {w, x, y, z} can be placed into one to one 

correspondence with the sequences in the manner of {<w, s>, <x, ss>, <y, sss>, 

<z, ssss>}. We will need to put the empty-symbol between any such sequences 

on the tape, so that two sequences can be distinguished from one longer 

sequence. Alternatively we can adopt a two symbol alphabet instead of a single 

symbol, where the second alphabet symbol is an end of sequence marker. 

In contemporary computing we use an alphabet of two symbols, {0, 1}, and 

fixed length sequences. No end marker is needed when the sequences to be 

placed into correspondence are of fixed length. So for example, the symbols in 

the alphabet {dog, cat, mouse, fish} may have the correspondence of {<dog, 

00>, <cat, 01>, <mouse, 10>, <fish 11>}. Conventional fixed sequence lengths 

are 8, 16, 32, and 64. So for example, when the sequence length is 8, any 

alphabet of 256 symbols or less may be placed into correspondence. A 

conventional correspondence table is that of the ASCII code. The fixed length 

to be used can depend on computational context. (In contrast, UTF8 does not 

use fixed length sequences, so there must exist at least one end of sequence 

marker.) 

Another alternative to end of sequence markers for variable length sequences is 

to externally account for sequences lengths. We call such an accounting system 

a type system. 
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Leaving out the empty-symbol 
When we use a fixed sequence of {1, 0} to stand for symbols, it is expensive to 

reserve a sequence for the empty-symbol. This expense is due both to losing the 

use of a symbol in the alphabet, and in the complexity of control circuitry when 

keeping track of it. 

The empty-symbol is a property of the machine rather than just another alphabet 

member, because the tape initially has an infinite tail of empty-symbols. A 

computational Turing Machine is limited to taking a finite number of steps. Thus 

it cannot compute a tape initialized with an empty-symbol (or any other value). 

However we can add a constraint on all Turing Machine controllers that requires 

of controllers that they never write the empty-symbol, and always write an 

alphabet symbol to a cell before reading it. Then, because a cell is never read 

before being written, it does not matter what we write into it for initialization. 

We may even use an alphabet symbol. Consequently this constraint allows us to 

eliminate the empty-symbol. This gives us the following Turing Machine 

variation: 

 1. fixed finite alphabet 

 2. fixed write before read constraint 

 3. variable single ended tape 

 4. variable read/write head 

 5. variable read value buffer 

 6. fixed controlling state machine 

 7. fixed left from leftmost error 

 8. fixed start state 

 9. fixed halt state 

10. variable current state 
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11. fixed procedure for using these.  

 

To validate that this is an inconsequential Turing Machine variation, rather than 

a description of new abstraction that is not a Turing Machine, we must show 

two things: Firstly, that any of the now disallowed controllers never compute 

something that cannot be computed in the presence of the constraint. And 

secondly, that there are same complexity class alternatives for any disallowed 

controller. 

No need to step into the inactive area 
1. When attempting to step into the inactive area, instead keep a counter for the 

number of steps the machine would take. Only allow reads or writes or head 

movement when the counter is no longer needed due to the head having moved 

back into the active area. 2. Just write an alphabet character and change the 

inactive area traversed into an active area. 
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The active area on the tape can grow at most by one unit for each machine step. 

This largest growth occurs when the Turing Machine steps right and writes an 

alphabet character in every visited state. This means that for computational 

machines that start with a tape that has a finite input (active area), the output 

(active area) will be finite. This also means that space complexity can never be 

larger than time complexity.  

A fixed value is one that is provided with a Turing Machine definition, and does 

not change while the machine runs. Suppose we chose a fixed length Turing 

Machine tape. The tape would then have a rightmost cell. That cell would have 

no right neighbor, but would have a left neighbor. We would also add another 

error, that of right from rightmost. This error would be invoked when the 

controller attempted to step right from the rightmost cell. 

Consider a machine that does not step out of the active area, has constant space 

complexity, and where this space complexity is less than the fixed length for the 

finite tape – such a machine would never trip the right from rightmost error, and 

thus there would be no difference between a finite tape and an infinite one. 

Now suppose that we bound the length of the input, and that the maximum space 

required for such inputs or shorter ones is less than or equal to the length of the 

tape. Then again, the right from rightmost error would never be taken, and thus 

the tape would be indistinguishable from an infinite one. (Today we typically 

pad programs with lots of memory and long address words in hopes this will be 

the case.) An analogous argument can be made if we bound the number of steps 

that may be taken. 

The TTCA Turing Machine 
variation 
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Now consider the case where we do not fix the length of the input, nor the 

number of steps allowed, and that space complexity is such that space usage 

grows with growing input length, at least for very long inputs. For such 

machines we can always find an input of sufficient length to trip the right from 

rightmost error. 

As another approach to finite computing we can run computations twice. For a 

given input we first run the Turing Machine variation that does not step out of 

active area but still has an infinite tape. We watch this machine closely while it 

is running and find the bound on the active area. Now we can create a second 

machine that has a fixed length tape at least as long as our active area 

measurement but is otherwise the same. Now with this second machine we can 

run the same input and there will be no right of rightmost error, and thus there 

will be no difference between having the finite tape or an infinite one. 

Unlike for the constant space complexity proposal, and the bounded input length 

proposal, which only work for small subsets of potential inputs, this 'run twice' 

proposal derives a finite machine that works for any given input which a Turing 

Machine works for. Though, unfortunately, in all cases the second run will be 

moot, as we could have simply taken the output from the first run.  

In a variation on the run it twice approach, instead of running the first machine, 

we might instead analyze it and should we be able to surmise a maximum tape 

length, we could use that.  

In yet another approach we can extend the finite tape as needed. We create a 

control layer over the finite tape. When a step right command from the Turing 

controller invokes the right from rightmost error, the lower layer allocates 

memory, lengthens the tape, and then performs the requested step right. As long 

as this occurs in fixed time, (or of sufficient lesser order time than the dominate 

order of the time complexity), and as long as there is indeed more memory to 

allocate - this Turing Machine variation will yield the same order of 

computational complexity as one with an an infinite tape.  
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I propose the following Turing Machine variation: 

1. fixed finite alphabet 

2. write before read constraint 

3. variable and extendable finite tape 

4. variable read/write head 

5. variable read value buffer 

6. fixed controlling state machine 

7. fixed left from leftmost error 

8. fixed right from rightmost error 

9. fixed start state 

10. fixed halt state 

11. variable current state 

12. fixed procedure for using these 

In our original Turing Machine model, the controlling state machine commands 

were limited to, do-nothing, step-left, step-right, write, with reading as 

an implied command. To this list we add append. The append command may 

only be called when the head is on the rightmost tape cell. This is not limiting 

because the command may be called from a state that is at the end of an arc 

triggered by the right from rightmost error. When we have no empty-symbol, 

append accepts an alphabet symbol and performs a write into the new cell. This 

is not limiting because if need be, one can always perform an extraneous write 

of an alphabet symbol. 

With this extendable tape model all Turing Machine components remain finite 

during computation, though some may be arbitrarily large. This variation is 

more suited for creating a mapping between a Turing Machine and a real 

program running on a real machine. 
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More about commands 
The Turing Machine state controller has a command symbol tied to each state. 

The Turing Machine procedure then has us take action based on this symbol. 

This is our current command set: 

1. step-right, causes the head to move to the right neighbor cell. 

2. step-left, causes the head to move to the left neighbor cell. 

3. read, returns the symbol under the head. The returned symbol is then 

used to chose the transition arc. 

4. write(x), causes the symbol x to be written to the cell that the head is 

currently on. The symbol x is any symbol from the alphabet.  

5. append(x) may only be called when on the rightmost cell. Extends the 

tape by one cell, and writes the symbol x into that cell, where x is any 

symbol from the alphabet. 

We are going to relieve the constraint that append can only occur from 

rightmost. Our new append is functionally identical to adding a cell to the 

rightmost extremity, and then shifting all the symbols over by one cell starting 

at the new cell and ending when the new rightmost has been written - and then 

doing the requested write of x on the right neighbor cell. 

We will also include the inverse function for append. delete(append(x)) reads x 

while deleting the cell that x was in. The current Turing Machine model can 

emulate this function by shifting all the symbols in cells the right of the head 

left by one, and then just not using the rightmost cell.  

We are also going to support multiplexed state controllers. Our multiplexed 

Turing Machine will have multiple heads. One for each separate thread of 

execution through the state controller. As explained in the following chapters, 

supporting multiplexing makes our machine more complex, especially in the 

presence of the delete command. However, we defer that discussion to the 

relevant chapters.  
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In cases where successive states are visited in a fixed order it is convenient to 

combine the commands. We have developed the concept of a command 

statement to support this: 

♦ 

The left direction is specified with a minus sign, otherwise the direction is taken 

as right going. So the letter s is the step-right command, and -s is the step-left 

command. The command s3 steps right three times. 

The command a appends and writes a new cell to the right of the head. We use 

two special characters from the UTF character set to signify the rightmost and 

leftmost of the tape. This one looks like a little tape with its left cell inked in, ◧, 

so we use it to stand for leftmost. We use this one, ◨ ,to mean rightmost. Hence 

a◨ creates a new rightmost cell, and a◧ creates a new leftmost cell. 

statement::[direction]command+[modifier][&contract]*[arg]* 
direction::- | ε 
command::r | w | s | a | d | m | e | ☥ 
modifier::◧ ◨ n 
command 
 r read cell under the head 
 w write cell under the head 
 s step 
 a allocate/add/append a new cell 
 d deallocate/drop/delete cell 
 m move, no allocation or deallocation of cells, requires fill 
 e entangled copy 

 ☥ entangled copy on a new thread 
modifier 
 ◧ operate on leftmost 
 ◨ operate on rightmost 
 n repeats n times, n provided through an argument 
contracts 
 h◧ head is at leftmost 
 h◨ head is at rightmost 
examples 
 -s  ; step left 
 a◧  ; creates a new leftmost cell 
 a◨  ; append to rightmost 
 sn  ; step n times 
to derive a longer command, combine them: 
 as  ; append then step 
 -a-s ; append to the left, step to the left 
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In some cases it is possible to implement higher performance implementations 

for commands when the programmer tells us some additional information. For 

example a◨&h◨ has identical functionality as a◨, while the programmer also 

guarantees that we are on the rightmost cell. This saves the function from having 

to scan to the end of the tape. 

We can concatenate the command letters into a string to summarize what would 

happen sequentially in adjacent state transitions. If these compound commands 

need arguments, then they are pulled from the argument list in order as they are 

needed. For example, as means to append, with the parameter for the append 

taken from the argument list, and then to step. 

We support multiplexing with the command e, which is short for entangled. 

This operator returns what appears to be a second independent machine, but this 

apparently independent second machine actually shares the same tape with the 

first machine. It is functionally identical to giving one machine two heads, and 

thus the ability to have state sets. 

The command esr is a compound command referring to sequentially applying 

three other commands. The e says to make an entangled copy of the head. The 

s says to step this copy, and the r says to do the read. The analogous esw does 

a write as the last step. This sort of combination of letters to make more complex 

commands was inspired by Lisp's car and cdr compositions.5 Though this is 

functionally what the command does, its actual implementation might be 

completely different. 

The combination of multiplexing and cell deletion creates the hazard where one 

thread can delete a cell the head is on in another thread. We add a collision error 

continuation to our multiplexed Turing Machine interface just because of this 

situation. 

 
5 Lynch, Thomas W. “Towards a Better Understanding of CAR, CDR, CADR and the Others” 

arXiv:1507.05956 2015-07-25 
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Chapter conclusion 
The modifications made to the Turing Machine to create our TTCA machine 

were inconsequential, in that for order of complexity and existence proofs we 

may swap one machine for the other and the results will be the same. 

The original Turing Machine had an infinite tape. In contrast the TTCA machine 

has a surprising property: for computational problems all of its components 

remain finite. This follows from the fact that during computation a machine 

makes a finite number of steps, so the tape can only be expanded to be a finite 

size. 
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Because our TTCA Turing Machine has finite sized components, we may create 

a software model for the TTCA Turing Machine without having to make 

assumptions of the sort that ‘very large approximates the infinite’. Rather we 

can show a one-to-one mapping of code and data in the software model and the 

TTCA variation of the Turing Machine. Consequently, the software model and 

theoretic model are isomorphic.  

It follows that we can use our TTCA Turing Machine software to make 

theoretical statements about computation in the form of programs. By following 

this path we will learn some interesting things in this chapter about analysis, the 

meaning of emptiness, data type, the properties of non-destructive vs destructive 

programming styles, and multi-threaded programming among other things. 

The Turing Machine, and our variation of it, may be partitioned into two parts. 

One part of the part consists of the tape head and the tape.  We call this the Tape 

Transport Unit, as that is the name used for the mechanism that does this work 

on real tape storage units.  The other part of the part is the Controller.   

The Tape Transport Unit accepts commands for reading, writing, and moving 

the head. (In real Tape Transport Units the head is in a fixed position and we 

move the tape, but the relative affect is the same.) Our modified model adds 

commands for extending the tape. During normal operation these commands 

only come from the controller. 

We have two types of controllers.  One type of controller is a state machine.  Its 

design is an integral part of the Turing Machine. To step the Turing Machine 

means to step this state machine to its next state.  The state machine definition 

exists before the Turing Machine takes its first step, and its definition remains 

TTCA Turing Machine in Lisp
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intact for as long as said Turing Machine exists.  When we speak of a Turing 

Machine without adding further words to the term as qualifiers, we mean that it 

uses this type of controller.  For clarity we can call this a Directly Controlled 

Turing Machine.   

The second type of controller is the Universal Controller, and a Turing Machine 

that uses this this type of controller is called a Universal Turing Machine.  The 

Universal Controller reads the definition of a state machine controller off of the 

tape.  Hence the Universal Turing Machine may emulate any Directly 

Controlled Turing Machine.  We can also call this an Indirectly Controlled 

Turing Machine.  Here the qualifier ‘Indirectly’ is intended in the sense it is used 

in assembly languages, meaning the data is not present in the controller, but 

rather it must be fetched from memory. 

With our Tape Machine library, your program is the controller, and the library 

implements the Tape Transport Unit.  (In the future I will rename this library to 

‘TTU’ from the current ‘TM’. Also the use of the term ‘function’ will be changed 

to ‘routine’.) 

Your program that uses the TTU library is in a sense direct control, because the 

program is already defined before the first step of the machine, and with the 

possible exception of self-modifying code, it does not change until the program 

exits, and thus the process no longer exists.  On the other hand, your program is 

loaded from memory by the processor, thus demonstrating that the processor is 

an indirect, i.e. universal, controller.  Either interpretation works depending on 

how broad of a view we want to take.   

Installing the library 
TM is presented as an iteration library on the de facto package manager for Lisp 

quicklisp. Alternatively, a person may clone the repository 

www.github.com/Thomas-Walker-Lynch/tm and then checkout the latest 

release tag, which as of this writing is v0.7-alpha. After installing the code cd 
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into the tm directory and run your lisp interpreter. Inside your lisp interpreter 

type the commands (load “load”) and (test-all). test-all should return 

with a message that all of the tests passed. It is possible that the threading tests, 

'ts1-' might fail if your machine is heavily loaded or very slow, as they have 

timing built into them, but this is unlikely. Then type either (use-package :tm) 

or (in-package :tm) depending on what your objectives are. 

The examples in this chapter either come from the tm/test directories, or from 

the tm/docs/examples directory. At the time they were placed in the book, they 

executed correctly, and I have endeavored to keep the examples up to date. 

This is what it looks like when I follow install using the git clone method: 

♦ 
> git clone http://www.github.com/Thomas-Walker-Lynch/tm 
Cloning into 'tm'... 
remote:Counting objects: 3052, done.     
remote:Total 3052(delta 0),reused 0(delta 0),pack-reused 3052    
Receiving objects: 100% (3052/3052),2.41 MiB|1.52 MiB/s,done. 
Resolving deltas: 100% (2366/2366),done. 
> cd tm 
> git tag 
v0.1-alpha 
v0.7-alpha 
> git checkout v0.7-alpha 
Note: checking out 'v0.7-alpha'. 
You are in 'detached HEAD' state ... 
> sbcl 
This is SBCL 1.3.14.debian ... 
* (load "load") 
; compiling file "/home/tm/package-def/conditions.lisp" 
; compiling (IN-PACKAGE #:TM) 
  ... about 10 pages of these 
hooking test: TEST-TS1-5 
T 
* (test-all) 
     + TEST-UNWRAP-0 
... about a page of these tests 
     + TEST-TS1-5 
all 78 passed 
T 
* (use-package :tm) 
T 
* (≠ 1 0) 
T 
* 
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Notice I used git tag to see the releases. At this time, v0.7-alpha is the latest, 

so I checked that out. If you want the unstable latest code rather than the stable 

latest release, leave out the git checkout command. 

The TM Library makes use of Unicode. There is no getting around it. This is 

discussed further in the next section. In addition TM defines synonyms for 

commands such as 'not equal', which is the one command shown at the end of 

the transcript given above. 

Unicode usage 
For your convenience there is a file "emacs-keys" in the docs directory of the 

distribution. It sets the 

C-x g name SPC 

command to enter one of the Unicode characters that are used in the library. 

Here 'name' is a nickname.6 

So to type the character capital delta after emacs-keys has been loaded, type C-

x g D SPC. Actually Δ occurs twice in Unicode, once as capital delta, and once 

as a symbol for 'increment' in mathematics. We consider the increment version 

to only be there for typography purposes. We only use capital delta, even when 

it is for an increment variable. 

I've limited the use of Unicode mostly to things that 'probably would have been 

this way had Unicode been around before'. This includes conventional notation 

and a couple of symbol extensions that were needed to facilitate the TM access 

language. 

In the file src-0/fundamental.lisp find synonym bindings for the usual 

operators and common symbols such as ∧, ∨, ≥, ≤, λ, ∅, etc. 

 
6 I would have preferred to have modified the existing C-x 8 so that such a nickname followed by a 

space would enter a character, but when delving into the emacs library I found it to be rather 
'Unicode technical'. Perhaps someone can help with this. 
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Specific to the library we use the character '◧' as shorthand for 'leftmost'. This 

is because it looks like a little tape with the inked over cell being the leftmost 

cell. In the same manner the character '◨' is shorthand for rightmost. We use '➜' 

in continuation function names, and '⟳' as a loop operator. 

The ◧ and ◨ symbols are used in compound command names and for access 

language statements to indicate operation on rightmost or leftmost rather than 

the cell the head is on, or, to specify contracts with the programmer of the sort: 

"this function is only called when the cell is on rightmost." 

Since I had symbols for leftmost and rightmost, I started using them generally 

to mean leftmost or rightmost wherever it was convenient. For example, to 

shorten up the names of continuations so that parameter lists would fit on a line. 

Synonyms 
♦ 
(defmacro defsynonym (old-name new-name) 
 "Define OLD-NAME to be equivalent to NEW-NAME." 
 `(defmacro ,new-name (&rest args) `(,',old-name ,@args)) 
 ) 
 
 (defconstant ∅ nil) 
 
 (defsynonym /= ≠) 
 (defsynonym <= ≤) 
 (defsynonym >= ≥) 
 
 (defsynonym not ¬) 
 (defsynonym and ∧) 
 (defsynonym or ∨) 
 
 (defsynonym string/= string≠) 
 (defsynonym string<= string≤) 
 (defsynonym string>= string≥) 
 
 (defsynonym lambda λ) 
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Some reader macros 

q – a non literal quote 

In Lisp a quoted list is taken as being literal. However the result of modifying a 

literal is undefined, and often leads to bad results. Hence we provide the macro 

q which returns a quoted list which is not a literal. 

       * (q a b c) 
       (A B C)      

{…} - unevaluated list 

When a form enclosed in parentheses, ( ... ), is evaluated the head is taken as the 

name of a function, looked up and called. The list members are also evaluated, 

and then passed as arguments to said function. If we don't want the head treated 

specially, but rather just want to define a list, we can use a front item of #'list, 

which is the function to create a list. 

      * (list 1 2 (+ 1 2)) 
      (1 2 3) 

 
We have defined a macro called L that like #'list, creates a list, but which 
also has some extra functionality. 
 
      * (L 1 2 (+ 1 2)) 
      (1 2 3) 
 

We also provide a reader macro for L as braces. 

      * {1 2 (+ 1 2)} 
      (1 2 3) 
 
If the apparent function open, #'o, appears inside of a call to L, then the 
arguments of the #'o function are included directly in the resulting list: 
 
      * (defvar a {1 2 3}) 
      A 
 
      * (defvar b {4 5 6}) 
      B 
 
      * {a (o b)} 
      ((1 2 3) 4 5 6) 
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Quoted non-literals can also occur within such an L list: 

      * {a (o b) (q a b)} 
      ((1 2 3) 4 5 6 (A B)) 
 
      * {a (o b) (o (q a b))} 
      ((1 2 3) 4 5 6 A B) 
 

L is a little bit like quasiquote turned inside out. Whereas the default in 

quasiquote is to quote items, and a comma operator turns that off, the default in 

L is to evaluate items, and a q operator turns that off. Quasiquote has an @ marker 

to open up lists, while L has an o operator to open up lists. Inside of a quasiquote 

we could get in trouble if the name of a variable starts with an @ character; if 

such a variable appears after a comma, quasi quote will consider the variable 

name without the @ sign is to be opened and included. There is no analogous 

problem with the o operator because it only appears in the function channel. 

(The problem with quasiquote is that it uses 'in-band signaling' which mixes 

control with data in one channel.). 

[...] - head is variable holding a function name 

In Lisp the head of an evaluated list is taken as a function name. Consider this 

example that curries a two parameter function into a unary function by replacing 

one parameter with a constant argument of 3:7 

(defun curry-three (f n) (f n 3)) ; has errors 

When we compile this function we get two errors: 

The variable F is defined but never used. 

and 

undefined function: F 

The first f is in the parameter list of the function definition, so it is taken as a 

variable name. In contrast the f in the body is at the head of an evaluated list, 

 
7 curry example is expanded from that given in “The Common Lisp Cookbook” see 

http://cl-cookbook.sourceforge.net/functions.html 
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so it is taken as a function name. Hence there is a disconnect, and we get error 

messages describing this disconnect.  

The Lisp operator #' indicates that the symbol that follows is a function name 

to be taken literally, and not a variable name. This gets our function name into 

the data space for use as an argument. The Lisp function funcall accepts as a 

first argument the name of a function to be called, while the remaining 

arguments are passed through to said function as its arguments: 

♦ 

In the definition for curry-three we do not get interpreter/compiler errors. 

This is because f is consistently used as a variable name. funcall will use the 

value of the variable f as the name of a function to call. 

In the second line we define a function to pass into curry-three. I just put 

something simple here for sake of discussion. plus is defined to be a function 

that takes two arguments and sums them.  

In the third line we use the #' operator to tell Lisp that plus is a function name 

to be used literally as a value.8 This will be a value passed into curry-three no 

differently than had we put a number or string instance as an argument. Inside 

of curry-three the #'plus becomes the value of the variable f. Then the 

funcall function will use this value as a function name, and then call it. 

This is how function pointers are handled in Lisp as it does not have an explicit 

pointer type. 

 
8 An implementation might use a different type of reference to the function than the functions name, 

such as a pointer to an entry in a symbol table, or perhaps a pointer to the function. All that is 
required is that #' produces a value that can be used by funcall. 

(defun curry-three (f n) (funcall f n 3)) 

(defun plus (x y) (+ x y)) 

(curry-three #'plus 2) 

5 
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Actually we didn't need to define the function plus, because '+' is already a 

function. We don't have reserved operator symbols in Lisp, instead we just have 

loose rules on what can be used for function names.  

(curry-three #'+ 2) 

5 

We introduce a shortcut with the TM Library. Normally a list to be evaluated is 

in parenthesis, and its head is taken literally as a function name. With the TM 

Library loaded, when a list in square brackets is evaluated, the head is taken as 

a variable name, and the value of this variables is the function to be loaded. It is 

a nice coincidence that square brackets mean indirect addressing in many 

assembly languages. 

We implemented this feature with a reader macro which simply turns the square 

bracket list into a regular list and inserts the funcall as its head. This occurs 

before the Lisp evaluate phase sees the syntax. 

Using the square brackets we may define curry-three as: 

* (defun curry-three (f n) [f n 3]) 

CURRY-THREE 

* (curry-three #'plus 2) 

5 

Here is another example. Suppose that instead of passing #'plus in as an 

argument, that we first assigned it to a variable and then pass the variable value 

as an argument: 

* (defvar our-fun #'plus) 

* [our-fun 4 7] 

11 

* (curry-three our-fun 2) 

5 
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Here the value assigned to the variable our-fun is a function name. The variable 

is then used as any other, and its value is passed in as an argument to curry-

three. Note, all arguments are evaluated before the function is called, so 

variables are replaced with their values. And as we know, inside curry-three, 

funcall will take the function name value from the corresponding parameter 

and call it as a function.  

Things can become a little confusing when the variable name has the same name 

as the function. 

* (defvar plus #'plus) 

* (curry-three plus 2) 

5 

Here #'plus is the function name as data. plus when it appears as the head of 

an evaluated list is a function name, otherwise it is a variable name. It is little 

wonder that the Lisp dialect Scheme put function names and variables name in 

the same space. However by doing so they had to provide some automatic 

conversions between variable names and function names. 

Summary 

When evaluated: 

(q f g h) – non-literal list of symbol literals, f, g, and h. Unlike for quote, it 

is safe to modify the resulting list. 

(o f g h) – not a list, rather f, g, and h are to be included in a {} form that 

contains this form. E.g. { (o 1 2 3) } is the same as {1 2 3}. 

{f g h} – list. f, g, and h are variables that are replaced by their values. 

(f g h) - function call. f is literally the function name. g and h are variables 

that are replaced by their values, and then passed as arguments. The result of the 

function replaces the entire form. 
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[f g h] – indirect function call. f is a variable replaced by its value, and that 

value is then looked up and called as a function. g and h are variables replaced 

by their values and passed as arguments. The result of the function replaces the 

entire form. 

Continuations 
In the early 1960s many of the programming concepts we take for granted today 

were not yet solidified. Many programmers wrote what we call ‘spaghetti code’. 

When programmers wanted to branch to some code shared by multiple parts of 

the program, they might add code to branch there directly. It only made sense to 

keep the address for continuing the computation afterward in a register. With 

the advent of Algol the conventions for calling such reused segments of code, 

subroutines, were formalized. The method call that begins by pushing a stack 

frame with arguments, an allocation for local variables, and the address to return 

to after the subroutine completes has become ubiquitous to computing.  

An alternative method for calling functions is to pass the continuation points 

into the function as arguments.  The function itself then decides which 

continuation to follow. For this to work the continuation will also need to carry 

along with it some memory context. 

In the 1993 paper, “The Discoveries of Continuations”, DOI 

10.1007/bf01019459, John C Reynolds explores the origins of the continuation 

method. In our computing epoch Andrew W. Appel has written extensively on 

compiling with continuations. He and his colleagues developed compilation 

techniques and wrote a compiler. See “Compiling with Continuations”,  ISBN 

978-0521033114. 

The TTCA supports the continuations call model. This approach is introduced 

in this chapter and further developed in later chapters. 
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Concept 

Conventionally programmers think of programs as linear sequences of 

instructions, and any disruptions being temporary. As examples, an if block is 

considered to be a temporary election between two linear sequences that both 

lead to a common point at the end of the block. Calls to subroutines are also 

temporary diversions, as execution will continue at the instruction after the call.  

In the TM Library we move to a non-linear model of function calling by passing 

as arguments multiple possible continuations. When a given function reaches a 

completion point, instead of returning, it calls one of the passed in continuation 

functions. A function may also call continuation functions in a non-blocking 

manner to launch threads. 

Here is a silly read function gasket that either returns a result or a status code. 

The method of returning a status code is a fairly common approach to error 

processing. Sometimes the status code is a null pointer flat, and sometimes it is 

an integer value. 

♦ 

After calling mock-read the caller will check the returned status code. If  all is 

OK, the program will use the result. 

(defun mock-read (n) 
 (if (= n 0) ; zero marks end of stream 
  'eos 
  (if (oddp n) ; say the lsb is a parity bit 
   'parity 
   (write-to-string n);convert n to a string and return it 
   ))) 
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♦ 

Notice that we are checking for the same error condition twice.  The program 

does this first inside the function to decide to return an error code, and then later 

the caller checks the status code. 

We might have instead used throw and catch. Typically we would still have a 

redundant structure for pairing up the catch.  Generally the overhead of throw 

and catch is too high for them to be used as part of the main computation thread.  

They are intended to be used only for handling exceptional conditions. Not all 

non-zero status codes are so exceptional. 

If we could have multiple exits, status codes and redundant tests would not be 

necessary and the code would be easier to read. Here is a new version of mock-

read where a list of continuation functions are passed in as a list: 

♦ 

 

I have given this list that holds the continuation functions the one character long 

name of  ➜. When speaking in the context of parameter passing, I will refer to 

this as the 'continuation' character. This is not an operator, rather it is just a one 

character variable name.  

(defun use-mock-read (n) 
 (let( 
    (result (mock-read n)) 
    ) 
  (case result ;unwind the status code 
   (eos (print "end of stream")) 
   (parity (print "parity error")) 
   (otherwise (print result)) 
   ) 
  t 
  )) 

(defun use-mock-read-with-continuations (n) 
 (mock-read-with-continuations n 
  { 
   :➜ok   (λ(result) (print result)) 

   :➜eos  (λ() (print "end of stream") t) 

   :➜parity (λ() (print "parity error") t) 
   })) 
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I have used destructuring-bind to parse the continuations list. destructuring-

bind is the same function that is used by eval to bind arguments to parameters. 

Consequently we use the same syntax here as for specifying function 

parameters, and &key gives us keyword arguments, etc. Keywords are useful for 

function arguments because lambda function arguments can get quite long. 

In this example, the continuations list is used to pass three arguments, which are 

bound to the parameters ➜ok, ➜eos, and ➜parity.  In this example is not 

necessary to provide continuations because #'echo, (be 'eos) and (be 

'parity) have been set as defaults.  

By adopting the convention of prefixing a '➜' onto continuation function names 

we can easily recognize that they are function continuations when we see them 

inside the function body. Note the lonely '➜' is the name of the continuation list 

as a whole. It isn't a separator. As a convention we always provide the 

continuations on the tail of the argument list. We often tip our hat to the old 

concept that one exit is somehow normal, by calling it ➜ok. 

The very last thing that a function that is passed continuations must do is to call 

at least one of the continuation functions, or to terminate execution of the thread. 

The continuation result cannot be used in the function, and indeed no processing 

can occur after the continuation is called. Continuations are not function calls, 

because they do not return. These rules are currently enforced by contract with 

the programmer. 

Here is mock-read with continuations being used: 
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♦ 

Regular &optional and &rest arguments 

Our use of &optional just before the continuations list parameter constrains the 

programmer from using &rest for regular parameters. Should the programmer 

need to provide a variable number of regular arguments, then he or she should 

pack them into a list. The '{..}' macro makes this simple to do.  

♦ 

When control arrives in the function the more-args list can be unpacked using 

destructuring-bind where &rest and &optional, etc. are available. Indeed 

this is the approach we have used for the list of continuation functions, and we 

have already provided an example. A call with variable arguments would then 

look like this: 

♦ 

Some useful continuations 

All the functions in the library use continuations for end cases rather than 

throwing errors, because what is one person's error, is another person's 

(defun f (a b &rest c &optional ➜) ;bad parameter syntax 
(defun f ( a b more-args &optional ➜) ;good parameter syntax 

(f a-val b-val {c0 c1 c2} {cont-ok cont-bad0 cont-bad1}) 

 (defun mock-read-with-continuations (n &optional ➜) 
   (destructuring-bind 
    (&key 
     (➜ok #'echo) ; if all goes 'ok' 
     (➜eos (be 'eos)) ; we don't like zeros! 
     (➜parity (be 'parity)) 
     &allow-other-keys 
     ) 
    ➜ 
    (if (= n 0) ; zero byte marks end of stream 
     [➜eos] 
     (if (oddp n) ; parity check 
      [➜parity] 
      [➜ok (write-to-string n)] 
      )))) 
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opportunity to run some more code. In particular, this is how we add code for 

handling such things as continuing from left from leftmost, and right from 

rightmost. Continuations are important for achieving Turing Complete 

computing. 

Here are some useful stub and error reporting functions defined in the 

distribution file functions.lisp. These are often convenient when setting 

continuation defaults. 

♦ 

The function do-nothing lives up to its name. It accepts any number of 

arguments, performs no operation and does not return anything. echo returns its 

arguments. Actually it is just a synonym for values. be returns a constant 

independent of what is passed in for arguments. cant-happen throws an error 

saying it is impossible to get to this function. This is useful for finding mistaken 

assumptions. alloc-fail throws an error saying that allocation failed.9 

Functional programming 

Some Terminology 

The communication between the Turing Machine controller and the Turing 

machine tape transport unit consists of a limited number of instructions, such as 

step right, step left, read symbol, and write symbol. With a Universal Turing 

Machine, the controller for a specific Turing Machine is encoded on the tape. 

 
9 However, in the version of the library as of this writing you will see the Lisp allocation condition 

rather than calls to the allocation fail continuations. 

(defun do-nothing (&rest x) (declare (ignore x))(values)) 
 
(defun echo (&rest x) (apply #'values x)) 
 
(defun be (&rest it) 
  (λ (&rest args)(declare (ignore args))(apply #'values it)) 
  )  
 
(defun cant-happen () (error 'impossible-to-get-here)) 
  
(defun alloc-fail () (error 'alloc-fail)) 
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While the Universal Turing Machine interprets this description it acts like the 

specific Turing Machine described by it.  

The activity of creating the specific Turing Machine controller encoding can be 

called coding.  The encoded controller description sitting on the tape can be 

called code. These terms come from communication theory.  Note that not all 

codes are secret codes. 

Similarly a microprocessor reads its encoded control instructions from system 

memory.  In analogy to the Universal Turing Machine, this specific machine 

description causes the general purpose processor to take actions on its 

interfaces.  

Processor instructions occur in groups we call routines.  A routine is invoked 

either through an interrupt, a jump instruction, or if the processor has a dedicated 

call instruction, by using that. 

In turn routines are grouped into entities called programs.  Programs are 

managed by an operating system.  A running program is called a process. The 

operating system assigns to each process a unique unsigned integer ID and a 

virtual memory space.  The same program may be run more than once 

simultaneously.  Each time the same or a different program is loaded, then run, 

it is given a separate process, and will have a different process ID and different 

virtual memory space. 

Each program has one main routine.  After the program is loaded, the OS will 

call the main routine.  The main routine then calls one or other routines, which 

we may call subroutines to distinguish them from the main routine. Subroutines 

in turn may call other subroutines.  Some subroutines might come from dynamic 

shared subroutine libraries that exist outside of the program.  Others might come 

from precompiled libraries and linked into the code to create an executable 

image of the program. Still other subroutines will be custom written by the 

programmer. 
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In programming, a function is a routine that designates a return value. This 

return value is inserted into the program at the place the function was called 

from.  In this manner functions may be used in expressions. 

With some small changes, this same nomenclature works for interpreted 

languages. Accordingly, references to the OS and to the processor are replaced 

with references to the interpreter.  The interpreter loads the program and 

interprets its instructions. Hence, the interpreter and the accompanying program 

model is a kind of virtual computer, also called a virtual machine. 

Side effects 

In this section we will discuss some properties of functions in programming and 

how functions in programming are related to functions in mathematics. To 

facilitate this discussion in the text of this section I will write function related 

terms used in programming while using source code style.  In this section I do 

not mean that these are keywords in a language, though they might be, rather I 

am using this styling convention solely as a device to distinguish between the 

programming context and the mathematics context. 

The term function is used by Fortran to describe routines that have a 

designated return value.  Such functions can be invoked within expressions.  

In Fortran function routines are distinct from procedure routines, because 

procedures do not designate a return value, and thus cannot be called from 

within expressions.  Examples of functions include sqrt, sin, and cos.  An 

example procedure would include such things as a routine that writes input 

values as records into a database and does not return anything. Procedures may 

also write results back through arguments that are passed by reference.  In the 

C language there are no procedures.  If the programmer does not want a 

designated return value the function can is defined to return any value, perhaps 

a zero, and the calling code ignores it.  Relatively recently in the evolution of C 

the void semantic has been added to the language. We can now say that a 

procedure is a function that returns void. 
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The term function was borrowed from mathematics for a couple of reasons.  

Firstly because in mathematics functions return a single value so they can be 

used in expressions, and Fortran functions share this attribute.  Secondly, 

because programmers typically give their routines that perform approximations 

the same name as the functions in mathematics that they shadow. People who 

read the source code and see a function name that matches a function name in 

mathematics and will reasonably assume that the mathematical function is what 

the programmer wanted to have, but was forced to use an approximation 

because, well, after all, we can’t always have what we want. 

A function causes a side effect at run time if it writes a passed by reference 

input, and later that modified value is used by the program in a consequential 

manner; if it shares variables with another function and changes the value of 

one or more of those variables in a manner that is consequential; if it reads a 

shared variable as an input that did not come through the argument list and this 

read has consequences; and/or if it maintains state variables, which when 

modified change the future behavior of the function in a consequential manner. 

Another type of side-effect occurs if a function writes its designated result while 

also returning an error saying that it could not write the result, and that write has 

some consequence.  As an example, this could happen if the memory associated 

with the designated result is also used as a temporary variable during 

computation, or if for some reason the function continues to run after setting the 

result and incurs an error. 

Conventionally, a function is said to have side effects as an intrinsic property 

if there is any way that the function may be used at run time in a manner that 

causes a side effect.  For the opposite case, where a function can never cause 

side effects no matter how it is used, it is said that the function does not have 

side effects.  I prefer to not mix the have and cause forms of these statements, 

and the cause form works grammatically when we talk about run time events, 

so I will use ‘cause’ rather than ‘have’.  
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By definition, functions in mathematics do not cause side effects.  

The proposition that a function cannot cause side effects at run time, or 

alternatively the inverse proposition, that a function potentially will cause side 

effects, is a property of the function itself. A function can be known to never 

cause side effects either through proofs based on analysis of its code, or through 

knowledge that the method of construction can only lead to definitions of 

functions that cannot cause side effects. For example, if a language does not 

have syntax for expressing code that potentially causes side effects, then we can 

know that functions created in that language cannot cause them. 

Although Fortran and C functions accept inputs and return a value, as do 

functions in mathematics – they can differ from functions in mathematics due 

to the potential for side effects. Fortran has common blocks and output 

arguments, and C has global variable scoping and syntax for passing inputs by 

reference.  

When computer scientists wanted a term for a function that cannot cause side 

effects, so it would be more like the function of mathematics, they found 

themselves in a pickle sauce of their own making, as the term function in 

programming was already commonly used to mean a C type function. Instead 

of trying to rectify this, they patched the problem by using new term for this 

better behaving function, namely, pure function.   

The use of the term function in programming will always be questionable in 

the absence of a formalism that shows it fits the mathematical definition. 

Hence in this text I will refer to functions as routines. This is precise and 

correct. If it is otherwise unclear from context if a routine has a designated return 

value; I will state this explicitly. Of course all C-like routines have a return 

value. If it is important to note that a routine cannot cause side effects, I will say 

so. 



68 

But why limit ourselves to just talking about routines?  Perhaps we want to 

analyze arbitrary sequences of instructions. The term referential transparency 

says that replacing any instruction sequence, expression, or function, with its 

result will not cause consequential changes to the program. We might imagine 

being able to replace referentially transparent instruction sequences with big 

lookup tables. This is the same as saying that said sequence of instructions 

cannot cause side effects. Hence, in this text, when I want to say that a sequence 

of instructions has referential transparency, I will say, “this sequence of 

instructions cannot cause a side effect.” 

It is possible to write routines without side effects in Lisp, Fortran, C, and for 

that matter in all popular languages. It is just a matter of contracting with the 

programmer to make a commitment to use this programming style, and for the 

programmer to have the discipline to pull it off.  Sometimes programing teams 

who want to use this programming style will not want to rely on such a contract 

and programmer discipline, so some specialized languages have been designed 

with a routine definition semantic that simply does not allow the coding of side 

effects, notably Haskell. (Haskell goes beyond this by also supporting routines 

as data.) 

Our TM library routines might make changes to their input arguments. For 

example, by moving a tape head of a tape machine argument.  Actually most of 

the routines in this library have been written for the very reason of causing side 

effects on tape machines. 

Routines as data 

The Universal Turing machine stores an encoding of its state controller on its 

tape. In a similar manner it was a great advance in electronic computing when 

programs began to be treated as data. And though we have all memorized the 

phrase “programs are data”, we have also been taught that “self-modifying code 

is bad.”  
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Programs in contemporary computers are loaded onto virtual memory pages 

before they are run. Virtual memory page accesses are constrained by 

permission settings. After the routines are loaded, the pages are set to allow 

execution and to be read-only. Data to be used by a program are placed on 

separate pages that are readable and writable but are not executable.  Hence, in 

some contexts programs are like data, for example when being loaded or stored; 

but in other contexts they are not, for example when being executed.  

The advantage of read-only code pages is that they may be shared between 

processes that are running the same program without danger of this becoming a 

pathway for communication between the processes.  However, having read-only 

code pages means that without making special arrangements with the operating 

system, programs cannot modify their own instruction sequence. 

Nothing prevents a programmer from writing in advance all variations of a 

routine that could come about from self-modification, and then choosing among 

them at run time.  It might be inefficient, but in theory it can be done, and it 

implements the same functionality as self-modifying code without forcing the 

virtual memory system to put write permissions on code pages during execution. 

A miniature example of writing variations in advance is a case statement or a 

jump table. Even an if statement chooses between two code variations. 

In the spirit of code being data, some languages support assigning a routine to a 

variable, passing it around as data, and then calling the contents of said variable. 

Typically what is really happening is that all the functions to be used are loaded 

in advance on their read-only executable pages, and it is the addresses of the 

functions, and not the definitions of the functions, that are assigned to variables.  

This is the explicit case in C. 

Suppose for example, we want to write a first routine that when passed a second 

routine as an argument, operates on it, and then returns a third routine. More 

specifically suppose we want to curry away an argument of the passed-in routine 

by replacing it with a constant.  We can do this without self-modifying code by 
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returning the address of a prebuilt gasket function that accepts a reduced number 

of parameters and then calls the second routine which was passed in.   

In general it is impractical to expect all possible self-modification results to be 

compiled in advance. This trick of using a gasket function works for prepending 

prefix instruction sequences, and appending postfix instruction sequences, but 

not for more profound modifications. Also it comes at a performance cost when 

programmer might have intended a performance increase. 

Lisp program definitions that were typed in by the programmer remain available 

at run time.  This is because Lisp is an interpreted language. In contrast in a 

compiled language the function definitions typed in by the programmer will 

have been compiled away before run time.  Thus in Lisp it is possible to write a 

first routine that accepts a second routine as an argument, and then for the first 

routine to literally modify the routine definition that was passed in and to return 

this modified definition as a result.   

Lisp also has a facility for compiling routines on the fly, so the new definition 

may be compiled if the point was to gain performance. The on the fly compile 

takes care of the permissions on the virtual pages. However, this comes at the 

cost of not following the OS’s built-in understanding of the relationship between 

programs, processes, and virtual memory pages. 

Transactional behavior 

In data science a transaction is a group of database operations that either all 

succeed or none of them are applied. 

Routines without side-effects are transactional. If an error is thrown while 

executing such a routine, no data will be changed.  Without side effects there is 

simply no way to change the program state apart from returning a value, but if 

the routine terminates early, no value is returned. 

The routines in the TM library do not return, rather each follows a continuation, 

and in multithreaded programming, potentially many continuations.   However 
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we can still maintain a property similar in sprit to being transactional.  Namely, 

we handle data in such a way that continuations can perform their jobs. 

For example, if a routine attempts to advance a tape head beyond rightmost and 

then write a value, the right-of-rightmost continuation will be taken.  The 

routine must preserve the ability of right-of-rightmost to fix the problem 

and to complete the write.  It does this by leaving the tape head on the rightmost 

cell, and passes to both the machine being operated and the value to be written 

to the continuation. Then  right-of-rightmost may expand the tape and 

complete the write.  It might complete the write itself, or it might re-enter the 

origin routine.  In the latter case there will not be an infinite loop because the 

tape was expanded. 

Descriptive and procedural 

An example of descriptive programming language is Prolog.  For example, in 

Prolog we may describe the data we would like to have, while using blanks for 

the missing parts.  Due to the semantics of Prolog this will cause a unification 

engine to fill in the blanks. This work might trigger a database query. A couple 

of other descriptive languages are the compiler tools Lex and Yacc. With Lex 

the programmer provides regular expressions for tokens, and then the tokenizer 

is pointed at a file and tokenizes it automatically.  In Yacc grammar rules are 

given in terms of tokens, and the built in parser examines the token stream and 

builds a parse tree.  Another example of descriptive programming comes from 

my QST radio node processor, where the programmer first configures the 

arithmetic logic units for streaming solutions, and then from the assembly level 

the program may begin the streaming.  

It is sometimes the holy grail of computer scientists to find generally useful 

engines that reduce the burden on the programmer to merely describing the 

problem.  We see this in library designs, and in the school of thought that one 

of the jobs of computer scientists is to design languages that ‘fit problems’.  
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In contrast to descriptive programming, there is procedural programming where 

we provide step by step instructions on how to solve a problem. Descriptive 

programing requires being able to formally describe the problem while being in 

possession of an engine that solves a general class of problems based on their 

descriptions.  While writing a procedural program requires first having a solid 

understanding of a problem, and then writing a program that provides step by 

step instructions for solving it.  

Lisp can be programmed in a descriptive style for recursively defined problems, 

and this style is usually taught in programming courses for Lisp. Theoretically, 

all computable problems will have a recursive form. Given an appropriate 

library the C language can be used in this manner, but it is usually nowhere near 

as elegant. C came of age as a procedural language, and almost all C programs 

are procedural. 

The TM library is descriptive of a tape machine transport unit. Turing Machines 

are all about stepping, and sequences of instructions for solving problems.  They 

are the essence of procedural programming. I sometimes refer to the TM library 

as an iteration library for Lisp. This is somewhat of a conceptual contradiction, 

as the Lisp programming style is usually based on recursion rather than iteration. 

The point of using Lisp was the ability to make formal statements in the 

language.  Still I occasionally see on the programming boards someone looking 

for an iteration library to be used with Lisp. 

Summary 

The chapter title suggests that we are going to define a term called ‘procedural 

programming’, but what we have discovered is this term does not mean one 

thing. It can mean that we have pure functions, i.e. routines that cannot cause 

side effects. It can mean that the language supports treating routines as data.  We 

found that this could mean passing around addresses to precompiled routines, 

and perhaps composing existing routines using a gasket.   Or it could mean that 

the language can modify routine definitions directly.  We also might have 
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routines that describe our problem, or those who explain how to solve it step by 

step. 

Lisp is usually called a functional programming language, while C is not often 

called this.  In both C and Lisp it is possible to write routines that cause side 

effects, or to write them in a manner that they can not cause side effects.  It is 

possible in both languages to pass routines around as values held in variables.  

Lisp allows routines to be anonymous, C has a long tradition of letting the 

programmer ignore information he or she does not want to have, which is pretty 

much the same thing.  The one difference is that in Lisp, the programmer read 

routine definitions at run time, and created new modified versions. In C program 

definitions are compiled away, so at run time they cannot be read, let alone 

operated on. 

Hence is not entirely clear what a functional language is.  We might be better 

off explicitly giving the properties of the routines relative to their ability to cause 

side effects, to be modified at run time, or to be used in a descriptive manner, 

and to be transactional. 

The TM library does make use of passing routines as arguments, so in this sense 

it is an example of being functional.  But the arguments are often tape machines 

that will be modified through side effects, so in this sense the library is not being 

functional. The library routines are transactional in that they leave data in a state 

that is appropriate for each continuation that might be called.  This is similar to 

the way routines that do not cause side effects are transactional.   

Classes 
After the great fashion craze in computer science of structured programming 

came the mantra of object oriented programming. This chapter discusses the 

terminology we will use for object oriented programming in the TM Library. 

Lisp's object oriented programming extension is called CLOS.10 We explain in 

 
10 Common Lisp Object System 
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this chapter how the CLOS approach is a dual concept to that used in most other 

languages (such as in C++). 

Format, instance, type, and abstract data type 

In the section Multiple machines and sharing tapes we introduced data type 

and examined it from the point of view of its role in setting the format of 

memory. 

We may apply operators to compose data format descriptions to create the 

format description of a compound data type. Such operators are provided in 

language type facilities. As examples, in the C language, we have struct which 

compounds types of differing length components, and [·] which compounds 

formats of the same length components. If the program respects the type 

formats, and the symbol table locates variables into memory so there are no 

overlaps, then writing a value to one variable, will not corrupt the value of 

another variable - unless those variables are in an explicit union. 

Instantiating a compound format creates a composite instance made of the 

smaller instances. We may even consider all of memory as being one grand 

composite instance. In high level languages we give names to data types. As 

data type is bound to format, this facilitates the consistent use of format in 

assignment, in copies across routine boundaries, among other situations.  

But data type is more than formatting.  By using names for data types a compiler 

tool, or a human programmer, can ask the 'is-a' question about an area of 

memory, and the answer will be a symbol, i.e. the name given to the type.  

Typically programmers create the type names, and these names often mean 

something more to the programmer than they do to the compiler. Take for 

example, a struct called ‘employee’ that has fields for a ‘name’ and ‘ID 

number’. To the compiler this might correspond to a block of 8 bytes, which 

may only be copied to other areas of the same data type. In contrast, the human 

programmer might have in mind the company employees, and he or she might 
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have plans to add more descriptive fields later. The compiler and the 

programmer may have very different goals when asking 'is-a' questions, or when 

stating 'is-a' facts about a data type. 

Now here is an interesting development. Suppose we describe two types that 

have different names, but they are otherwise identical. In real programming this 

happens often. Take for example a struct with two numbers that in one case is 

a vector on a real plane, but in another case is a complex number. Perhaps we 

determined their formats were identical by having analyzed the lengths of their 

components and any operators used when compounding those components. As 

a result of having defined these data types with different names our compiler 

may refuse to copy data even though there is no danger of corrupting memory. 

In this situation the format name carries with it a distinction to the compiler that 

is independent of that of the details of the format. 

We can explicitly acknowledge that these two types of the same format. by 

separating format out as being a separate entity from the data type.  Then the 

vector type and the complex type provide alternative interpretations of the two 

number format.   

♦ 

 

Figure 6 Type format, instance 
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This sharing of format is similar to the object oriented programming inheritance 

concept variously called specialization, extension, or derived type, but the 

inheritance concepts more generally allows for base format block to be 

extended.  Hence derived types can have different formats, so the concept of 

shared format is different, though related. Part of the job of modern compilers 

and languages is to take over the formatting work for us. Programmers typically 

see very little of this problem, and when they do deal with format they often 

find it annoying.  Examples of format choices made at the programming level 

include choosing among floating-point single or double, or choosing 32 bit or 

64 bit integers. 

We must have memory access routines to be able to make use of formatted data. 

In single threaded programming we will only need read and write.  In 

multithreaded environments we will also need some sort of locking or atomic 

read modify write operation. In this example fmt-read accepts an instance base, 

an offset value gotten from the format description, and then returns an instance 

from memory. fmt-write accepts an instance as a third argument and then 

copies that instance into memory. 

Conflating data type with data format holds us back from writing generic code.  

Suppose we pull out the format from the definition of type.  What is left is an 

abstract notion of type. We are then freed to use that notion of type when writing 

generic code.  This style of programming is called generic programing.  Of 

course before our program can run, we will need to bind definitions of format 

to the abstract types. We might then have different generic programs that have 

the exact same control flow in the abstract, that compile into different 

instruction sequences. 

As an example of abstracting out format, suppose we have an instance of our 

complex number type, and it was instantiated from format declared with a 

struct in C. Our access routine for reading from this formatted memory accepts 

a given field name, say either re or im, which are symbols, and then returns the 
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contents of the corresponding field. Write does the inverse action. Now compare 

this to using C++ STL map, where the access routines accept field names as 

keys, and then traverses a red black tree to access the instance. In both cases the 

call to the read routine accepts the same symbol and reads or writes the same 

instance.  Either way the two programs will return the same results. Clearly there 

is something going on with type which is independent of implementation. 

In languages such as C we bind format to data type to help us write correct code.  

In fact, it appears the concept of type was invented for this.  We can add another 

option for type checking by specify in advance the operations allowed on 

particular type.  This would be very helpful in preventing programming errors 

in either concrete code or generic code. C++ programmers will recognize that 

class declarations can be used as such a routine list specification.   

We can abstract the routine list by using routine names instead of the actual 

routines.  We may then have a list of generic routines that constrain the use of 

abstract type.  And of course, by runtime these abstractions would have to be 

bound to format and defined routines.  With this approach we may write generic 

programs with type checking. 

Earlier we discovered that there is a many to one relationship between type and 

format.  Consequently we cannot work backwards from format to define the 

type it is bound to. But what about the relationships between type and the routine 

list that constrains its use, can we derive the type from the routine list?  In the 

case where we have a complete list of all routines to be allowed with a type, and 

there is a one to one correspondence between the type and its routine list, we 

can do this.  Python programmers call this ‘duck typing’.   This comes from the 

phrase, ‘if it quacks like a duck it must be a duck’.  This technique comes from 

the 1974 paper where Liskov and Zilles developed the concept that, “An abstract 

data type defines a class of abstract objects which is completely characterized 

by the operations available on those objects”, DOI 10.1145/942572.807045. 

However, it is possible to have many types sharing the same routine list.  These 
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bound types might mean different things to the human programmer. In such a 

case the type cannot be derived from the routine list. 

A C struct and an STL map are decidedly different formats. Hence, they 

cannot be the same data type. However, either can be used on the lower layer 

for returning values in response to being given keys (or field names), i.e. the can 

be used for implementing the same abstract data type. 

♦ 

In the figure above the programmer sees only a symbolic form of the type and 

a read/write interface. Different implementations may be created by providing 

different compatible implementation types. Though the programmer creating 

the logic might not see it, we still need a data type for the implementation.  

With CLOS, a new type is defined by giving a type name and field names in the 

def-type form.11 CLOS also provides an implementation, but we emulate 

abstract data type by trying not to think too much about it, and instead 

 
11 def-type is an alias we provide for CLOS's defclass. I would like to avoid conflating the 

concepts of type and class, so have provided this synonym. 

 

Figure 7 Abstract data type 
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concentrating on the program logic.12 This is Lisp so there will be many 

parenthesis. Here is a type called complex-number: 

♦ 

You will see more examples of this in the remainder of the book. Note that in 

CLOS the 'field names' are called 'slots'. I guess they didn't want to conflate 

what looks like an abstract type declaration using def-type with the combined 

type and format building of C's struct or perhaps with fields from database 

records.  

The definition of type built on formatting is the result of the composition of 

more primitive types, with the base case of a bit.  The definition of type from 

routines is based on analysis.  Hence we can refer to these in a descriptive 

manner as composition type and analytical type. Composition type is a bottom 

up definition, where as analytical type is a top down definition. 

Inheritance 

The second parameter of the def-type macro form provides a place to put a list 

of other types, and then the slots from those other types will be automatically 

included in the new type. This process of including slots from other types is 

called inheritance. We say the new type is more specialized than the types it 

inherited slots from. If we do not want to inherit slots from other types, as was 

the case in the complex-number example, give an empty list as the value to bind 

to the second parameter, i.e. give an empty list as an argument. 

Typically instances of a specialized type can be used by routines that were 

designed for instances of the more general type. This is because all the required 

slots will be present in the more specialized type, while code written for the 

more generalized type ignores slots it does not use. In fact, CLOS will assume 

 
12 Alas, perhaps some day the compiler will be smart enough that such an approach does have such a 

performance impact. Though sometimes flexibility does translate into performance. It certainly 
translates into faster development time. 

(def-type complex-number () ((real-part) (imaginary-part))) 
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we want to do this, and during dispatch it will fall back to type matching against 

more general types when it does not find a match on the specialized type. 

This explanation of extra slots being ignored works well when arguments are 

passed by reference. However, when arguments are passed by value, we can't 

ignore each instance's actual size. In Lisp all instances created from user defined 

types are passed by reference. 

There can be multiple specializations for a given type, each adding different 

additional slots. This happens in the TM Library. 

Routine classes and generic routines 

When programming in a language like C we are forced to write our routines 

with format correct data usage embedded in them. Routines are then linked by 

name. However, sometimes we would prefer a more abstract, or more generic 

behavior. Say for example, we want a print routine that takes an argument of 

any type, and then outputs a Unicode image of the argument.  

In such cases the logic of the program is defined in the abstract, but how can we 

implement this? One solution is to implement many print routines, and then 

have the tools choose which print routine to link based not just on the routine's 

name, but also on the type of its argument. Accordingly we place a simple call 

of the form print(x) in our source code. In a compiled and linked language, the 

linker will select the print routine to be used based on the type of x. Thus print(5) 

will call a routine that converts integers to strings and copies them to the output, 

while print(“Tom”) will call a different print routine that copies a string to the 

output. 

The set of routines used are equivalent in the sense that they all provide the same 

abstract functionality. When we put routines that are equivalent according to 

some property together in a set, we have something called an equivalence class. 

In this case it is an abstract routine equivalence class. We will shorten this term 



81 

to routine class. In our print example, print is the name for the class rather than 

for a particular member of the class. 

In our version of CLOS a routine class is declared using a def-routine-class 

form.13 If we were trying to create the behavior as described for our print 

example, then we would define the print class as: 

♦ 

In C++ we can implement routine classes, but for some unknown reason the 

language does not give us a facility for declaring them. 

Type classes 

There is dual concept to the routine class where we place all of the routines that 

accept the same type of argument into a set. This set would define a type of 

argument equivalence class, or type class for short. We name a type class after 

the type that is used to define it. For example, if we defined routines that operate 

on a type called, 'complex-number', and put them all in a set, we would have a 

complex-number type class. 

The set of routines that operate on formatted data gives that data its personality. 

This is to say, that a programmer can analyze the functional use of data and 

recover a definition of abstract data type. The definition of abstract data type 

recovered from any particular program will might not include routines that 

might be used on the same data type in the future or in another program. Hence 

we define abstract type against a specification that describes all the routines that 

may be used, rather than doing so from the routines that are used. (If there are 

some routines that are never used, we might want to consider changing our 

specified routines list.) 

Theoretically we know that there is a second order infinity number of 

mathematical routines, but only a first order infinity of data that can be 

 
13 def-function-class is an alias we provide for CLOS's defgeneric 

(def-function-class print(x)) 
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expressed as computer variables. Yet computer routines are coded as data. 

Perhaps this explains why routines tend to be longer and less regular (more 

complex) than data type declarations. 

CLOS does not require us to define type classes, but other languages, such as 

C++, place a great deal of emphasis on it. In C++ a programmer includes the 

literal class, followed by an open brace, a list of all the member routines, and 

then a closing brace. This works well when the defining type applies to a single 

argument, but, when there are two or more typed arguments the routines will 

belong to multiple type classes - so where should the programmer declare them? 

Surely we don't want the programmer to have to declare the same routine more 

than once! In such cases C++ drops into a 'friend function' approach. We would 

probably need this, for example, to define binary operators on our complex-

numbers. When calling a friend function there is no prefix argument preceding 

a dot, instead all arguments appear in the argument list. 

Perhaps it is because of this multiple argument issue that CLOS does not have 

a construct for declaring type classes. 

Dispatch 

Though CLOS does not facilitate the explicit definition of type classes it does 

select each routine based on types of its arguments, in a manner similar to 

selecting friend functions in C++, though because it is Lisp, this is done 

dynamically. The process of matching of the routine name, matching of 

argument types with possible generalization, and calling a routine is called 

dispatching a routine. Routine dispatch incurs considerable runtime cost. 

Though CLOS does not have built in support to help the programmer declare 

the type classes, it will throw warnings if the programmer does not declare the 

routine classes.  
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Lisp does not normally perform argument type matching, so we need a new 

form for declaring routines with typed arguments.14 One defines routines with 

type signatures by using the defun-typed form.15  

Here are a couple of examples: 

♦ 

The ellipses indicate that code was left out. They are not part of the routines. 

The parameter list consists of pairs. The first in the pair is the parameter name, 

and the second is its type. Hence the first print routine accepts a first argument 

of type integer. If an argument to be bound to the routine parameter may be of 

any type, it is listed in the old fashioned manner without a pair. 

 The Tape Machine data type 

Introduction 

The TM library interface is described in this section. This interface is abstract, 

being constructed from a combination of generic routines and declarations 

without definitions. The interface provides routines for iteration and 

continuation over containers. 

Routines in the tape-machine class may be used to traverse through a 

container, access instances held in it, and to handle end cases. Loop constructs 

follow naturally as quantification operations on containers. Unlike the case of 

the standard loop structure in Lisp the unprocessed parts of lists are accessible 

after exiting a loop, and may be used to continue the operation after a fix. Unlike 

the case of stream libraries, the tape machine has random access capabilities 

between continuation limits. 

The iteration model is constructed from formal concepts, most that have been 

well studied in computation theory. Tape machine based computation is a hybrid 

 
14 the term 'form' in Lisp is analogous to 'statement' in other languages 
15 defun-typed is an alias we provide for CLOS's defmethod 

(defun-typed print ((x integer) …) 
(defun-typed print ((x string)) …) 
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between that Turing Machine and a Lambda Calculus, with the Turing Machine 

used for iteration within a region, and then continuation routines, lambdas, 

invoked for extending the boundaries of the region. I make the claim that there 

are no library architectural limitations for working with arbitrary long 

containers or computations. 

If for no other reason, this formal derivation is useful because it guides the 

terminology. As it turns out, there is an explosion in the number of end cases 

when dealing with containers and generalized iteration. This formalism 

provides a language for talking about them. 

The TM Library may be used as a tool when writing Turing Complete programs. 

The current Common Lisp implementation of the library will be subject to the 

limitations of the Common Lisp interpreter or compiler. One will notice 

limitations for such things as address width and available virtual memory. The 

general Turing Complete architecture lifts the limitation on address width, and 

facilitates a graceful approach to the limits of the underlying physical memory. 

Even after depleting physical memory, one might continue again later, as the 

Turing Complete architecture puts no limitations on a physical implementation 

that supports the hot-swap addition of memory. 

Nomenclature 

Many implementations of the tape-machine type have a tape, and indicator 

head (or just head) fields - where these are placed into analogy with their 

namesakes in the Turing Machine model. 

Conceptually, or actually, a tape consists of an array of one or more cell(s). Each 

cell holds exactly one instance, where such an instance is either a) a subspace 

or b) data for which the tape machine user knows, or can recover, the type for. 

For a projective tape machine that has two or more cells, all cells, except two, 

have a left neighbor and a right neighbor. The two potentially special cells are 

called leftmost, which has only a right neighbor, and rightmost, which has only 
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a left neighbor. When such a machine has only one cell, well, that cell has no 

neighbors. 

For the TM Library we allow the inclusion of other topologies. For example, in 

an affine machine of three cells or more, all cells have both distinct left and right 

neighbors. This is accomplished by hooking the cells in a ring. When there are 

only two cells in such a machine, then for each cell, the other cell is both its left 

and right neighbor. For a one cell affine tape, the one cell is its own neighbors. 

A tape machine might not be implemented over a container. Instead, for 

example, it can be an abstraction that is maintained through routine calls, in 

which case even a projective tape might appear to be open and not have a 

leftmost or rightmost. 

Instances are the things we put into cells of the tape. Instances are not part of 

the container topology, i.e. they do not have connectedness. Hence they do not 

have neighbors or location. However, they may be placed into cells, and cells 

are connected. So, for example, rather than saying something like “the leftmost 

instance”, it is better to say, “the instance in the leftmost cell.” 

The terminology of left and right stems from the convention in mathematics for 

number lines. Here the cell addresses fall on a number line. Going right on the 

number line leads to higher addresses, and going left to lower addresses. 

Putting the head on a specific cell is to cue the head. A number of cue routines 

are defined in the library: park, cue-leftmost, cue-rightmost, cue-to, and sn. cue-

to takes an address, where as sn steps the machine (takes a first difference in 

addresses). The distance argument is passed 'in a box' i.e. by reference so that it 

can be modified to show the steps remaining should we attempt to step beyond 

the rightmost or leftmost cell. 

Heads are either stepped, cued, or parked. We do not apply other motion verbs 

to heads. In contrast, instances are said to be moved or copied. “Stepping a tape 

machine” means we follow the tape machine procedure, which is different than 
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“stepping the head” which refers to moving the tape head one cell over on the 

tape. Only instances can be moved, so saying that "a tape machine moved", 

would mean that said tape machine was an instance held in one cell, but then it 

was moved to another cell. 

Primitive routines are declared in the decl-only source files along with routines 

that have generic implementations. It is sufficient when defining a new tape 

machine specialization to provide an implementation for each of the routine 

class declarations found in the decl-only files. Routines defined in other files are 

built up from these primitives. Routines may be defined with parameters. At 

runtime arguments may be provided with the routine call. When the &optional 

and &rest keywords appear in the parameter list it is possible that a routine is 

called with fewer arguments than the number of defined parameters. In such a 

case the specified default arguments are used. 

Tape machines may have status. Status is typically whether the machine is 

abandoned, empty, parked, or active. In contrast, Tape Machine state consists 

of the variable parts of the machine including the head location and the instances 

on the tape. Though status is a kind of state, it is a state about an underlying 

machine, which is a higher order concept. 

Modifications to head location, or to the tape contents are said to be stateful 

changes. Modifications that add or remove cells from the tape are said to be 

structural. (Adding cells to the tape is called allocation. Removing cells from 

the tape is called deallocation.) We know from experience that programs that 

only modify state tend to be more straightforward and have fewer bugs than 

those that modify structure. Yet there always seem to be cases, such as gathering 

results, where structural changes are more convenient. Even Scheme allows one 

to use a cons cell to lengthen a list, albeit only from one end. 

When we need to specify boundaries, we try to use inclusive bounds so that we 

will not need to represent addresses that are outside of our address space. Our 

use of quantifiers in place of loop structures facilitates this approach. 
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Variables that hold tape machines often have a suffix of '-tm'. We think of this 

as being analogous to putting an 's' on the end of a world to make it plural. Take 

for example, suppose a tape machine holds instances that describe trucks. 

Perhaps the truck descriptor holds an id for a truck and miles since its last 

maintenance. The specifics of the descriptor are immaterial here. We might call 

said tape machine 'truck-tm'. This implies that that one or more truck descriptor 

instances, or for a status machine, zero or more truck descriptor instances are 

referenced by said variable. We do not say 'trucks-tm' because that is redundant. 

Marking the variable with a '-tm' already implies plurality. Likewise we do not 

say 'trucks', firstly because a simple 's' is easy to glance over,, and secondly 

because it doesn't imply what interface can be used for accessing the referenced 

container. 

The typical coding form is to do some work, and then to step. If the machine 

steps right of rightmost, or left of leftmost, then we do something else that is 

appropriate for this end case. 

Stepping through the cells of a tape (iteration) 

Each tape machine tape is typically bounded. Exceptions exist for abstract 

machines implemented through routines. Such machines may have tapes that 

appear to be infinite or looped. Also, affine machines have circular tapes, and 

thus have no bounds.  

To step a tape machine, say one called tm, one calls the routine s and passes it 

the tm instance and optionally two continuations. Upon striking a bound a 

continuation routine is executed, and that continuation routine may overcome 

the bound, or perhaps take some other action. Here the two continuations are 

called cont-ok and cont-rightmost: 

♦ 

The routine name, s, stands for 'step'. The tape machine, tm, is a combination of 

iterator and container and s causes the internal iterator to step. If we put the 

(s tm {:➜ok cont-ok :➜rightmost cont-rightmost}) 
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container into correspondence with a Turing Machine tape, the internal iterator 

with the tape head, and put the program, which is external to our container, in 

correspondence with the Turing Machine controller; then s can be thought of as 

stepping the head of a Turing Machine. 

➜ok stands for 'continue OK', while ➜rightmost stands for 'continue after 

stepping right of rightmost'. At any point in time our container will typically 

have a bounded size. When this bound is struck, we call ➜rightmost so that 

the program has an opportunity to overcome this bound and implement Turing 

Complete behavior.  

♦ 

For convenience we provide some general purpose continuation routines. One 

of these is the routine be, which returns a routine that returns a given value. 

Hence,     

♦ 

will return true, t, should the step succeed, and return false, ∅, should it not. 

These are in fact already the defaults. When used in this mode, s will almost 

surely be followed by a test of the return value, so when used in this mode we 

will have to do tests twice to decide just one thing; once inside the step routine, 

and once outside. 

It is a common mistake for beginning users of the library to put a form that 

evaluates to a value as an argument, rather than a form that evaluates to a 

routine. The following, for example, gets errors: 

♦ 

(s tm 
 { 
  :➜ok    (λ()(print "everything went well")) 

  :➜rightmost (λ()(print "go get more data!")) 
  }) 

(s tm {:➜ok (be t) :➜ok (be ∅)}) 

(s tm {:➜ok t :➜rightmost ∅}) ; bad semantics !! 
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Tape Machines can also be implemented over routines rather than containers. 

So for example, we can have a tape machine that represents the Natural 

Numbers. Each time it is stepped it just goes to the next Natural Number. There 

will be no rightmost cell, so a step call might appear as: 

♦ 

Here #'do-nothing is a stub routine that simply returns. Though the 

continuation does nothing, the step routine has done something. It stepped the 

natural-number-generator, so the next time we read the machine we will see 

a one larger number.  

There is no end to the set of Natural Numbers. so should we ever call the 

continuation for stepping from rightmost, there is a bug in Natural, and we 

throw an error. This sort of error is of a different nature than that of an end case. 

Unlike an end case, such a control flow change would be unexpected and of 

unknown origin. We have no obvious recourse that would be more meaningful 

than the thrown error. In general it would is unusual code that knows what to do 

in a presence of program bugs. Such code would be 'fault tolerant'. 

Note that continuations are routines, and the ➜rightmost continuation takes 

no arguments, so the error call must be wrapped in a lambda so as to give it an 

argument. 

There is already a cant-happen routine in the library, so instead of the lambda 

expression that throws an error we could have passed in #'cant-happen. 

Like s above, many of the tape machine routines are single letters. This 

facilitates stringing routine names together to create compound access routines, 

in analogy to lisp's car and cdr access language (cadr, caddr, etc.). The access 

(s Natural 
 { 
  :➜ok    #'do-nothing 
  :➜rightmost (λ() (error 'cant-happen)) 
  }) 
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language is then extended into a general out of band signaling pattern matching 

language that works on arbitrarily long data types. See the chapter . 

Here is a simple program using a tape machine: 

♦ 

When run it produces: 

♦ 

mk accepts a tape machine type and an initializer then returns an initialized 

instance. In this case the leftmost cell will have a '1' in it. Its right neighbor will 

have '2' in it. The rightmost cell will have '3' in it. 

r is a routine that accepts a tape machine and returns the instance indicated by 

the head. w does the inverse operation. It accepts a tape machine and an object, 

and then writes the object into the indicated cell. Hence, the first (print (r a-

tape-machine)) will print the number 1. 

s moves the tape head so that it lands on the right neighbor cell. The second 

(print (r a-tape-machine)) will print the number 2. Etc. Note we do not 

provide any continuation routine arguments to s. They are optional, and the 

defaults are (be t) and (be ∅). That is why at the final step, when stepping 

fails, the program returns NIL. (The printer is not aware of our alias ∅, so it prints 

NIL.)   

(let ( 
 (a-tape-machine (mk 'list-tm {1 2 3})) 
 ) 
 (print (r a-tape-machine)) 
 (s a-tape-machine) 
 (print (r a-tape-machine)) 
 (s a-tape-machine) 
 (print (r a-tape-machine)) 
 (s a-tape-machine) 
 ) 

  1 
  2 
  3 
  NIL 
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Tape-Machine primitive interface 

By interface I mean the set of routine class declarations and the routines written 

in terms of the declarations. These latter routines are said to be 'generic'. 

tm-type.lisp 

tape-machine is the most general type in the TM Library. 

♦ 

No instance will be made of tape-machine. Rather tape-machine has been 

defined only as a basis for specialization. Routines that have parameters with 

the type tape-machine will instead be passed instances of specialized types. 

Once such an instance has been passed into a routine, the only thing the routine 

can do with it is to pass it to other routines without accessing any slots. This is 

because tape-machine does not have any slots. This turns out to be useful for 

recognizing generic routines. 

We discuss some implementations in more detail in a later chapter, . 

Implementations are created by specializing the tape-machine through the 

addition of slots that hold data. Here is the type definition for the singly linked 

list implementation. tape is a reference to the list, and head indicates a node 

in the list. Taking a step will move the head to the next node. 

♦ 

Programmers will notice that such a tape machine resembles an iterator. The 

head is state for the iterator, such as a pointer to a member in the container (to 

a cell holding an instance), and tape is a pointer to the container. Such an 

(def-type tape-machine () ()) 

(def-type list-tm (tape-machine) 
 ( 
  (head ; locates a cell on the tape 
   :initarg :head 
   :accessor head 
   ) 
  (tape ; a sequence of cells, each that may hold an instance 
   :initarg :tape 
   :accessor tape 
   ) 
  )) 
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iterator need not be given a parameter naming the container, as it already has a 

reference to it. 

Linked lists in Lisp refer to their data by reference, so any instance, independent 

of its type, may be found on the tape for this machine. 

In our morphism between the mathematical abstraction of a Turing Machine, 

and our TM Library, type is placed into correspondence with the Turing 

Machine symbol, and instances of type are placed into correspondence with 

instances of said symbols. Turing Machine symbols should not be confused with 

the Lisp language symbols. Typically it is clear from the context which symbol 

definition is intended. 

The calling program plays the role of the Turing Machine state controller. The 

calling program sends commands, or statements, by invoking tape-machine 

type class member routines. Hence our interface routines will correspond to the 

commands. 

tm-mk.lisp 

For tape-machine specializations with implementations we can create new 

instances using the routine mk: 

♦ 

mk has three parameters. The first parameter, tm-class, may be bound to a Lisp 

symbol, where this symbol is a type name, and this type is a tape machine 

specialization with an implementation. Later we will see that list-solo-tm is 

such a specialization with an implementation. Hence, an example legal 

argument to pass in is 'list-solo-tm.  

(defun mk (tm-class keyed-parms &optional ➜) 
 (let( 
    (instance (make-instance tm-class)) 
    ) 
  (init instance keyed-parms ➜) 
  )) 
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The second parameter, keyed-parms, may be bound to initialization data for the 

new machine. We might, for example give this argument a value of :tape 

(list 1 2 3), or equivalently, :tape {1 2 3}. For the solo-tape machine, 

this initializes the first three tape cells to the numerical instances 1, 2 and 3. 

There are three common continuations, though specialized versions of tape 

machines can define others: 

♦ 

Exactly one of the continuations will be called as the last thing that mk does. 

➜ok is called and passed the newly made instance if all goes well. ➜fail is 

called if there is a semantic problem initializing the instance. And ➜no-alloc 

is called if there is not enough memory for creating a new instance. Note each 

of these continuations is set to a default routine. Hence, when no continuations 

are specified we get old fashioned behavior, where we make a call to mk and it 

returns a value, or instead throws an error. 

You will notice that mk has been declared with defun, and not defun-typed. As 

such, in Common Lisp, we cannot have multiple versions and then select among 

them depending on the type of the argument. However, mk creates an instance 

and then calls init. and init is defined with defun-typed, so we may have a 

different versions of init for the various tape-machine implementations. 

The def-routine-class does little more than provide an argument count. We 

can't even declare defaults for optional arguments. So here in the first line we 

have a declaration for a class of routines called init where each routine in the 

class will take two arguments followed by two optional arguments, perhaps 

(destructuring-bind 
 (&key 
  (➜ok #'echo) 
  (➜fail (λ()(error 'bad-init-value))) 

  (➜no-alloc #'alloc-fail) 
  &allow-other-keys 
  ) 
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followed by more arguments. The list that will capture the continuation 

arguments is a parameter called '➜'. 

♦ 

Just below the routine class declaration is a definition for an init routine. This 

init routine will be called if no other init routine has a more specialized tape-

machine class specifier. tape-machine has no implementation, so this init 

version is generic.  

One can also find a shallow copy routine in the tm-mk.lisp file. When given a 

tm-machine, it returns another tm machine that has a new head and a new tape. 

However, the tape references for both machines will point at the same instances. 

(def-function-class init (instance init-value &optional ➜)) 
(defun-typed init 
 ( 
  (tm tape-machine) 
  (keyed-parms cons) 
  &optional ➜ 
  ) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   (➜fail (λ()(error 'bad-init-value))) 

   (➜no-alloc #'alloc-fail) 
   &allow-other-keys 
   ) 
  ➜ 
  (destructuring-bind 
   (&key tape &allow-other-keys) keyed-parms 
   (cond 
    ((∧ tape (typep tape 'sequence)) 
     (cue-leftmost tm) 
     (w tm (elt tape 0)) 
     (loop 
      for item in (subseq tape 1) do 
      (as tm item {:➜ok #'do-nothing :➜no-alloc ➜no-alloc}) 
      ) 
     [➜ok tm] 
     ) 
    (tape [➜fail]) 
    (t [➜ok tm]) 
    )))) 
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Chances are good that the entanglement copies are a better choice when one 

desires to have copies that share references. 

tm-decl-only.lisp 

The tm-decl-only.lisp file contains routine class declarations. 

Specializations must provide: 

♦ 

 These are pretty much what one would expect given the lead up to this point. 

r, w, and s, are read, write, and step. esr and esw perform a read or write on 

the right neighbor. TM commands either operate on the leftmost of the tape, the 

rightmost of the tape, the cell under the head, or on an area to the right of the 

head. Commands that operate on the leftmost cell have a ◧ suffix on their 

names. So for example, r◧ , reads the leftmost cell. The 'operate on the area to 

the right of the head' type of operators came into being when we supported an 

expanding tape. The cascading implications suggested it was best for esr and 

esw to be primitive. 

(def-function-class r (tm &optional ➜)) 
(def-function-class esr (tm &optional ➜)) 
 
(def-function-class w (tm instance &optional ➜)) 
(def-function-class esw (tm instance &optional ➜)) 
 
(def-function-class r◧ (tm &optional ➜)) 
(def-function-class esr◧ (tm &optional ➜)) 
 
(def-function-class w◧ (tm instance &optional ➜)) 
(def-function-class esw◧ (tm instance &optional ➜)) 
 
(def-function-class cue-leftmost (tm &optional ➜)) 
 
(def-function-class s (tm &optional ➜)) 
(def-function-class a (tm instance &optional ➜)) 
(def-function-class on-leftmost (tm &optional ➜)) 
(def-function-class on-rightmost (tm &optional ➜)) 
  
(def-function-class tape-length-is-one (tm &optional ➜)) 
(def-function-class tape-length-is-two (tm &optional ➜)) 
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r and w typically do not require continuations, as the head is always on some 

cell, and in the presence of our contract with the programmer that he or she 

always do a write on a given cell before a read on that same cell, there can be 

no error condition associated with these operations. In contrast, s has a 

➜rightmost routine that is invoked when one attempts to step right from 

rightmost. If ➜rightmost is not called, then ➜ok is called. Note it always 

works this way, that continuations are exhaustive of all cases and that at least 

one of the continuations will always be called as the last thing that a routine 

does. Though continuation lists are not fixed, routines that operate on 

specializations might have additional continuations than the those that operate 

on the corresponding more general types. 

We cannot see which continuations are implemented by looking at the TM 

interface routine declarations. The only thing we will see is the continuation list 

parameter, '➜'. To see which continuations are implemented we must look at the 

definitions. Typically there will be a base list of legal continuations available 

for the most general type, with possibly more continuations available for 

routines defined against more specific types. 

Here are the routines in the 'tm-list class: 
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♦ 

♦ 

 

(defun-typed r ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   ) 
(defun-typed esr ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   (➜rightmost (λ()(error 'step-from-rightmost))) 
   &allow-other-keys 
   ) 
(defun-typed w ((tm list-tm) instance &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   &allow-other-keys 
   ) 
(defun-typed esw ((tm list-tm) instance &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   (➜rightmost (be ∅)) 
   &allow-other-keys 
   ) 

(defun-typed cue-leftmost ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   &allow-other-keys 
   ) 
(defun-typed s ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   (➜rightmost (be ∅)) 
   &allow-other-keys 
   ) 
(defun-typed a ((tm list-tm) instance &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   &allow-other-keys 
   ) 
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♦ 

 

(defun-typed r◧ ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   ) 
(defun-typed esr◧ ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   (➜rightmost (λ()(error 'step-from-rightmost))) 
   &allow-other-keys 
   ) 
(defun-typed w◧ ((tm list-tm) instance &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   &allow-other-keys 
   ) 
(defun-typed esw◧ ((tm list-tm) instance &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   (➜rightmost (be ∅)) 
   &allow-other-keys 
   ) 
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♦ 

on-leftmost and on-rightmost are Boolean routines of convenience. on-

leftmost takes the true continuation when the head is on the leftmost cell, 

otherwise it takes the false continuation. on-rightmost is follows the true 

continuation when the head is on the rightmost cell, otherwise it takes the false 

continuation. 

(defun-typed on-leftmost ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜t (be t)) 
   (➜∅ (be ∅)) 
   &allow-other-keys 
   ) 
(defun-typed on-rightmost ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜t (be t)) 
   (➜∅ (be ∅)) 
   &allow-other-keys 
   ) 
(defun-typed tape-length-is-one ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜t (be t)) 
   (➜∅ (be ∅)) 
   &allow-other-keys 
   ) 
(defun-typed tape-length-is-two ((tm list-tm) &optional ➜) 
 (destructuring-bind 
  (&key 
   (➜t (be t)) 
   (➜∅ (be ∅)) 
   &allow-other-keys 
   ) 
  ➜ 
  (if 
   (∧ (cdr (tape tm)) (cddr (tape tm))) 
   [➜t] [➜∅] 
   ))) 
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♦ 

If one wants conventional behavior from these tests, then use the be routines: 

♦ 

This call will return t or ϕ. Actually, these are already the defaults. 

♦ 

tm-generic.lisp 

This file contains more declarations for routine classes on the tm-machine 

interface. However, unlike for tm-decl-only.lisp, the file also has generic 

routine definitions. The generic routines exist to give implementations 

something to optimize. Otherwise compound operations can be specified. 

♦ 

This default implementation for cue-rightmost might not be the fastest one, 

but it will always work. A programmer is free to implement a faster version for 

specialized argument types. In general we need not implement routines in these 

classes, but are free to do so if we see some advantage in it. Here are more of 

the tm-generic.lisp routine classes and routine definitions: 

(on-leftmost tm 
 { 
  :➜t (λ() code to be executed when on-leftmost is true) 

  :➜∅ (λ() code to be executed when on-leftmost is false) 
  }) 

(on-leftmost tm {:➜t (be t) :➜∅ (be ϕ)}) 

(on-leftmost tm) 

(def-function-class cue-rightmost (tm &optional ➜) 
 (:documentation 
  "Cue tm's head to the rightmost cell." 
  )) 
(defun-typed cue-rightmost ((tm tape-machine) &optional ➜) 
 (declare (ignore ➜)) 
 (labels( 
      (work() (s tm {:➜ok #'work :➜rightmost (be t)})) 
      ) 
  (work) 
  )) 
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♦ 

(def-function-class as (tm instance &optional ➜) 
 (:documentation 
  "Like #'a, but tm is stepped to the new cell 
  ")) 
(defun-typed as 
 ( 
  (tm tape-machine) 
  instance 
  &optional ➜ 
  ) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   (➜no-alloc #'alloc-fail) 
   &allow-other-keys 
   ) 
  ➜ 
  (a tm instance 
   { 
    :➜ok (λ()(s tm {:➜ok ➜ok :➜rightmost #'cant-happen})) 

    :➜no-alloc ➜no-alloc 
    }) 
  )) 
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♦ 

Quantifiers 

I build the quantifiers on top of a self recursion (looping) routine, ⟳, called 

“do”.  

♦ 

The first and only argument passed to work is a routine, which when called, will 

cause work to be called again. The return value from ⟳ will be the return value 

from the last call to work. 

Actually the library does not implement the definition given above, because I 

found that the compiler was not optimizing out the recursion. As of version 0.7 

the implementation is:  

(def-function-class a&h◨ (tm instance &optional ➜) 
 (:documentation 
  "#'a with a contract that the head is on rightmost. 
  ")) 
(defun-typed a&h◨ 
 ( 
  (tm tape-machine) 
  instance 
  &optional ➜ 
  ) 
  (a tm instance ➜) 
  ) 
(def-function-class as&h◨ (tm instance &optional ➜) 
 (:documentation 
  "#'as with a contract that the head is on rightmost. 
  ")) 
(defun-typed as&h◨ 
 ( 
  (tm tape-machine) 
  instance 
  &optional ➜ 
  ) 
 (as tm instance ➜) 
 ) 

(defun ⟳ (work) 
  (labels( 
      (again() (funcall work #'again)) 
      ) 
  (again) 
  )) 
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♦ 

Existential quantification is based on ⟳: 

♦ 

When pred is true, the quantifier exits with ➜t. Otherwise pred continues on 

to step the machine and to call pred again. Should the step go right of rightmost, 

the quantifier exits with ➜∅. 

∃ stands for 'there exists' and it has multiple intuitive interpretations. One can 

think of it as a short circuiting logical OR. It can be thought of as 'loop until'. It 

is also a linear search for an instance with a particular property. For example, 

Diognese wanders Greece looking for a good person. He stops his search upon 

finding such a person. 

We build universal quantification from existential quantification: 

♦ 

∀ stands for 'for all'. This can be thought of as a short circuiting logical AND, 

as loop while, or as a check that all is good.  

Here are two trivial predicates, presented so you can see the general form: 

(defun ⟳ (work) 
 (let(return-value) 
  (tagbody 
   again 
   (setf return-value (funcall work (λ()(go again)))) 
   ) 
  return-value 
  )) 

(defun ∃ (tm pred &optional (➜t (be t)) (➜∅ (be ∅))) 
  (⟳ 

(λ(again) 
  [pred tm ➜t (λ()(s tm {:➜ok again :➜rightmost ➜∅}))] 
))) 

(defun ∀ (tm pred &optional (➜t (be t)) (➜∅ (be ∅))) 
 (∃ tm (λ(tm ct c∅)[pred tm c∅ ct]) ➜∅ ➜t) 
 ) 
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♦ 

The star suffixed version ∃* traverses until the end of the tape and returns a 

pair, the first of the pair being a count of the tests done, and the second being 

the number of tests that were true. 

The star suffix version ∀* of also traverses to the end of the list. It does not 

return anything. 

The quantifiers begin with the cell the head is on for the tape machine that is 

passed in. Versions with a prefix of 'c◧', which is the cue-leftmost command, 

will first cue to the leftmost of the tape, i.e. c◧∃, c◧∀, c◧∃*, c◧∀*. 

If one wants to collect results, do so on a tape machine that is available in the 

closure. One would typically use the as command to do so. 

The quantifiers may be used to implement the same functionality as map and as 

while loops. In a later chapter we discuss machines that create ranges of 

numbers. When used with these machines the quantifiers can be used to create 

for loops. Note also, the ensemble machine which is used to bind multiple 

machines together so they step as one machine. 

This routine will return true: 

(defun always-false (tm ➜t ➜∅) 
 (declare (ignore tm ➜t)) 
  [➜∅] 
  ) 
 
(defun always-true (tm ➜t ➜∅) 
 (declare (ignore tm ➜∅)) 
  [➜t] 
  ) 
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♦ 

So will this one: 

♦ 

Generators 

A generator is an abstract tape machine that is typically used to generate data, 

such as a sequence of numbers or letters. Generators may be stepped and read 

like conventional machines, but the value read is that created by an internal 

routine, rather than something that was written. 

(defun test-∃-0 () 
 (let*( 
     (y {1 2 {3 4} 5}) 
     (ytm (mk 'list-tm {:tape y})) 
     ) 
  (∧ 
   (∃ ytm 
    (λ(tm ➜t ➜∅) 
     (if 
      (∧ (typep (r tm) 'cons) (eql 3 (car (r tm)))) 
      [➜t] 
      [➜∅] 
      ))) 
   (equal (r ytm) '(3 4)) 
   ))) 

(defun test-∃-1 () 
 (let*( 
     (y {1 2 {3 4} 5}) 
     (ytm (mk 'list-tm {:tape y})) 
     ) 
  (∃ ytm 
   (λ(tm ➜t ➜∅) 
    (if 
     (∧ (typep (r tm) 'cons) (eql 3 (car (r tm)))) 
     [➜t] 
     [➜∅] 
     )) 
   (λ()(equal (r ytm) '(3 4))) 
   #'cant-happen 
   ))) 
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Recursive 

The recursive machine is given an initial value and a routine. After a cue 

leftmost command, reading the machine returns the initial value. Upon each 

step, the provided routine is applied to the prior value. The result can be read by 

reading the machine. 

When invoked, the routine is provided with a value and two continuation 

routines. Should the routine successfully compute a result, it calls the first 

continuation and passes it the result. If the routine cannot compute a result, then 

it calls the second continuation. This is useful for creating finite sequences. 

For example, this program returns true: 

♦ 

Here we use labels to locally define the routine inc-to-10. When passed a 

value less than or equal to 10, it adds one to it, and calls c-success. Otherwise 

it calls c-fail. Though we are using numbers in this example, we may work 

with instances of any type for which we can define a routine for.  

In Lisp a node in a linked list is called a cons cell. Such a cell is pair of values, 

where the first in the pair is called the car, and the second in the pair is called 

(defun test-recursive-0 () 
 (labels( 
      (inc-to-10 (i0 c-success c-fail) 
       (let( 
          (i1 (+ i0 1)) 
          ) 
        (if (> i1 10) 
         [c-fail] 
         [c-success i1] 
         ))) 
      ) 
  (let( 
     (tm (mk 'recursive {:initial 1 :f #'inc-to-10})) 
     (result ∅) 
     ) 
   (∀* tm (λ(tm) 
        (setf result (cons (r tm) result)) 
        )) 
   (equal result {10 9 8 7 6 5 4 3 2 1}) 
   ))) 
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the cdr. The car holds an integer that might be interpreted as a number or as a 

reference to a value, while the cdr holds either ∅ or a reference to the next cons 

cell. These terms have no special meaning outside of this context. Hence the 

routine (cons (r tm) result)) creates a list node with the value read from 

tm, and the reference to the next node in the list being the value of result. Or 

in short, it prepends a value to the result list. 

Inside the let, we create a recursive machine while passing an initial value of 

1, and our inc-to-10 routine. Then we use a quantifier to run through all the 

instances in the recursive machine. We use cons to repeatedly prepend the 

instances to a list. Finally we check the list. 

When working with vectors it is common to generate short sequences of 

integers. Hence, we have packaged the work of making an increment routine 

with a bound and a recursive machine into a single call, mk-interval. 

♦ 

Here we use mk-interval to create a recursive machine that will enumerate the 

integers in an interval extending from 1 to 9. It will count by twos while doing 

so, thus generating the values 1, 3, 5, 7, and 9. We then use these values to index 

an array. elt is the routine Lisp uses to index into an array. I initialized the array 

so that the values at 1, 3, 5, 7, and 9, are the same as their index. The quantifier 

then checks that indeed this is true in all cases for tm. 

With TM we use generators and quantifiers rather than for loops, or dotimes 

loops. 

(defun test-recursive-3 () 
 (let( 
    (tm (mk-interval 1 9 2)) 
    (v #(8 1 6 3 4 5 2 7 0 9)) 
    ) 
  (∀ tm (λ(tm ct c∅) 
      (if 
       (= (elt v (r tm)) (r tm)) 
       [ct] 
       [c∅] 
       ))) 
  )) 
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We have also defined a routine for making the Natural Numbers, as this was 

used as an example earlier in the book, mk-Natural. 

Here is an interesting, though silly, little program that uses mk-Natural. 

♦ 

The program is interesting in that the interval is protecting the loop so that there 

will be a return value. It returns true because there are five even and five odd 

numbers encountered. The total numbers traversed is 10, which is not the same 

as the count of odds. The program is a little bit silly, because iterating through 

the interval also produces Natural Numbers, so we didn't need N. Here is a more 

'pure' use of Natural: 

♦ 

(defun interesting-0 () 
 (let( 
    (i (mk-interval 0 9)) 
    (N (mk-Natural)) 
    (count-N 0) 
    (count-odd 0) 
    (count-even 0) 
    ) 
  (∀* i (λ(i) 
      (declare (ignore i)) 
      (incf count-N) 
      (if (oddp (r N)) (incf count-odd) (incf count-even)) 
      (s N) 
      )) 
  (∧ 
   (= count-odd count-even) 
   (≠ count-N count-odd) 
   ))) 

(defun interesting-1 () 
 (let( 
    (N (mk-Natural)) 
    (count-N 0) 
    (count-odd 0) 
    (count-even 0) 
    ) 
  (∀* N (λ(N) 
      (incf count-N) 
      (if (oddp (r N)) (incf count-odd) (incf count-even)) 
      )) 
  (= count-N count-odd count-even) 
  )) 
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This might be a good time to mention that hitting control C twice in Emacs 

interrupts a process. Though this program is not computable, it is analyzable. 

When we analyze it, we are surprised to find that there are just as many odd, or 

even, Natural Numbers as there are Natural Numbers in total, i.e. that the routine 

returns true. Apparently, somehow, on the way to infinity, the odd and the even 

counters catch up to the N counter. 

 Specializations 
As we mentioned in the prior chapter, by simultaneously supporting 

multiplexing and a cell delete command, we have created the possibility of 

colliding operations, i.e. a collision hazard. We can avoid this hazard by leaving 

out the delete command, or alternatively, by not allowing multiplexing. These 

choices lead to a specialization hierarchy for the interface: 

♦ 

The nd-tape-machine type class does not have a delete command, but it does 

support multiplexing. When we do not provide a delete cell command on the 

interface, the programmer cannot create an event where the cell under the head 

gets deleted. Such an interface can have multiplexing without a collision hazard.  

It is instructive to go through the code base for the TM Library and take note of 

how much simpler the routines belonging to the nd-tape-machine routine class 

are compared to other machine types. Although non-destructive programming 

is simpler, it leads to inefficiencies due to unnecessary recopying of data 

structures. 

Although an  nd-tape-machine does not have a delete cell command, a delete 

cell command may be emulated a by moving all the data to the right over by 

one cell. 

  
                tape-machine 
               /            \ 
     nd-tape-machine    solo-tape-machine 
               \             / 
               haz-tape-machine 
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The solo-tape-machine includes commands for cell deletion, but not for 

multiplexing. If we never have more than one head (i.e. never more than one 

iterator), then one head cannot be used to delete the cell to the right and wipe 

out a cell that a second head is on. Consequently there can be no collision 

hazard.  

Without multiplexing we cannot make copies of the head state (i.e. cannot have 

an additional machine head), and this prevents us from writing some library 

routines that transparently operate on their tape machine arguments. 

Many of the routines present in the nd-tm-decl-only and nd-tm-decl-

generic source files are not available in the solo-tape-machine routine class. 

These missing routines include a simple print routine.  The print routine is 

missing because it wants to make an entangled copy so it may transparently cue 

the head to leftmost. 

So at the first level of specialization there is an either-or situation, the 

programmer can have multiplexing, but not deletion, with nd-tape-machine; 

or have deletion but not multiplexing with solo-tape-machine. But, what if 

we do an evil thing, and diamond inherit both of these types into a third type? 

Then we get tm-haz where 'haz' is short for hazardous. With tm-haz it is 

possible to break the machine by calling entangle to get a second head, and 

then to use that second head to delete the cell the first head is on. Hence, tm-

haz machines may only be used without potential for errors when either a) there 

is a proof that such a collision will never happen b) they are controlled from a 

second order machine such as the ea-tm or its specializations. 

nd – multiplexing but non-destructive 

The non-destructive programming model interface is defined in the 'nd-tm' files. 

As mentioned above, there are no commands on the interface to delete 

(deallocate) a cell from the tape. 
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♦ 

Non-destructive machines support having multiple heads on the same tape 

without tape structural hazards, because there will never be a time when one 

head attempts to delete the cell that another head is accessing. To place a second 

head on a tape we make a new machine that shares the first machine's tape. 

When two machines share the same tape, we say they are entangled. To create 

an entangled machine call the routine entangle. 

♦ 

We pick up a couple of new predicates, one to test if two machines are entangled, 

and another to test if two entangled machines have their heads on the same cell. 

♦ 

♦ 

Given the ability to make entangled copies we can implement some new 

routines. 

(def-type nd-tape-machine (tape-machine)()) 

(def-function-class entangle (tm-orig &optional ➜)) 

(def-function-class entangled (tm0 tm1 &optional ➜)) 

(def-function-class  
  heads-on-same-cell  
  (tm0 tm1 &optional ➜) 
) 
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♦ 

s≠ is similar to s, but will take a bound continuation when one attempts to step 

beyond the bound set by tm1. 

The routine a◨ adds a new cell to the rightmost of the tape. Inside this routine 

an entangled copy is made, the entangled copy is then cued to the rightmost, a 

cell is appended, and then the entangled copy is abandoned. The caller's state is 

not modified.  

(defun-typed s≠ 
 ( 
  (tm0 nd-tape-machine) 
  (tm1 nd-tape-machine) 
  &optional ➜ 
  ) 
 (destructuring-bind 
  (&key 
   (➜ok (be t)) 
   (➜rightmost (be ∅)) 
   (➜bound (be ∅)) 
   &allow-other-keys 
   ) 
  ➜ 
  (heads-on-same-cell tm0 tm1 
   { 
    :➜t ➜bound 
    :➜∅ (λ()(s tm0 {:➜ok ➜ok :➜rightmost ➜rightmost})) 
    }))) 
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♦ 

We also pick up some quantified routines, such as esnr: 

♦ 

(defun-typed a◨ 
  ( 
   (tm nd-tape-machine) 
   instance 
   &optional ➜ 
   ) 
  (destructuring-bind 
   (&key 
    (➜ok (be t)) 
    (➜no-alloc #'alloc-fail) 
    &allow-other-keys 
    ) 
   ➜ 
   (let( 
      (tm1 (entangle tm)) 
      ) 
    (c◨ tm1) 
    (a tm1 instance {:➜ok ➜ok :➜no-alloc ➜no-alloc}) 
    ))) 

(defun-typed esnr 
 ( 
  (tm nd-tape-machine) 
  index 
  &optional ➜ 
  ) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   (➜rightmost 
    (λ(index) 
     (declare (ignore index)) 
     (error 'step-from-rightmost) 
     )) 
   &allow-other-keys 
   ) 
  ➜ 
  (let( 
     (tm1 (entangle tm)) 
     ) 
   (sn tm1 index 
    { 
     :➜ok (λ()[➜ok (r tm1)]) 

     :➜rightmost (λ(n)[➜rightmost n]) 
     } 
    )))) 
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Here esnr stands for 'entangled copy, step n times, and read'. This routine allows 

a program to read an instance n cells away from the current head position, 

without moving the head of the machine passed in. There are also analogous 

write and append versions of this routine. 

♦ 

solo – destructive operations allowed but uniplex 

The 'solo' machine does not have an entangle command on its interface, so there 

will be exactly one head on a given tape. Consequently its controller will be a 

uniplex machine. Without multiple heads there can be no hazardous situations 

where deleting a cell would break the machine. 

However, without the entangled copy routine it is not possible to create 

temporary machines that go off and do some work without perturbing the head 

position of the original machine.16 Consequently we can't have routines like a◨ 

which internally does an entanglement copy. 

We gain these primitives: 

♦ 

a◧ appends a new cell to the leftmost of the tape. The new cell is initialized to 

instance. d deletes (deallocates) a cell, and d◧ deletes the cell at the leftmost 

of the tape. The spill machine is optional, if it is present, the instance spilled 

from the deallocated cell is appended to it. Upon success the delete commands 

will call the ➜ok continuation with a single parameter of the spilled cell. The 

➜ok continuation defaults to #'echo. There is a bit of an awkward situation in 

that to provide continuations we must also provide a spill machine, as optional 

 
16 On an implementation that supports left stepping, it would be possible to step the head and count the 

steps, to perform an operation, and then step the head the opposite direction using the same count. 
However, the problem doesn't go away, as if the cell the head was originally on gets deleted, we 
cannot return the head to that cell.  .. and what of d leftmost when the head is on leftmost .. 

(def-type solo-tape-machine (tape-machine)()) 

(def-function-class a◧ (tm instance &optional ➜)) 
(def-function-class d (tm &optional spill ➜)) 
(def-function-class d◧ (tm &optional spill ➜)) 
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parameters occur in order. In such a situation, if there is not a spill machine, 

then set spill to ∅. 

Implementations 

Implementation specialization tree 

Our first implementation uses a singly linked list for a tape. A singly linked list 

has the disadvantage that stepping left is not possible. However, lisp 

programmers have a lot of experience in working around this limitation. The 

primitive routines without implementations appear in a specialization hierarchy, 

so we add our specialization as leaves in that hierarchy. We will have an 

analogous hierarchy for each implementation. It ends up looking like this:  

♦ 

The machines shown in square brackets are the interface definitions we have 

already talked about. The other machines on this diagram are specialized to 

provide a single direction, right going only, linked list implementations. 

File Name and Routine Name Convention 

The code discussed in this chapter is organized into directories. The src-list 

directory holds both the interface definition code and the single direction and 

bi-direction list implementations. 

 [src- | test- ]implementation 

 implementation:: list … 

 
                  [tape-machine] 
                              \ 
                           list-tm 
                           /      \ 
                          /        \ 
 [nd-tape-machine]       /          \     [solo-tape-machine] 
              \         /            \         / 
               list-nd-tm            list-solo-tm 
                         \           / 
                          \         / 
      [haz-tape-machine]   \       /    
                        \   \     /     
                        list-haz-tm  
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Each source directory starts literally with 'src-' and then the implementation 

name follows. Each source directory is paired with a test directory. The test 

directory holds files with the same names as those in the source directory, and 

the contents of those files are tests for the routines found in the corresponding 

source files. Additional test files will also be in the directory. 

The files are pulled together in the tm.asd file. The tm package uses asdf for 

build management. 

TM source file names have four parts. If a part is empty, then it does not appear 

in the name. 

[implementation][hedge]tm-category.lisp 

implementation:: ε | list- | array- | …. 

hedge:: ε | nd- | solo- | ea- | ts- 

category:: describes types of routines held in the file 

For example, tm-def.lisp holds def type files. This file holds general tape-

machine source code, that which has no implementation, and does not have 

either delete cell, nor multiplexing. As another example, list-solo-tm-

primitives.lisp. is a file that holds routines for a list implementation that uses the 

solo hedge to avoid the collision hazard. The file holds primitive routines. 

Types without implementations have tape machine spelled out, tape-machine, 

nd-tape-machine, etc. In implementations and for file names, tape machine is 

always abbreviated as tm. 

 TM test file names are of the form: 

 test-name-series 

 name:: name of the routine being tested or a descriptive name 

 series:: a number, typically sequential starting from zero. 
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Test routines return t when they pass. If there is an exception or the test returns 

something else, it has failed. To add a test to the regression suit, use the 

following command: 

♦ 

 

Where routine-name is the name of the routine being added to the regression. 

To run the regression type: 

♦ 

list-tm types 

We may make instances of these types by calling mk. 

♦ 

Here are some examples. All of our test routines return true, t. The tests are 

loaded with the library, and can be run with the command (test-all). 

♦ 

(test-hook routine-name) 

(defun test-heads-on-same-cell-0 () 
 (let*( 
     (tm0 (mk 'list-nd-tm {7 2 -3})) 
     (tm1 (make-instance 'list-nd-tm)) 
     ) 
  (init tm1 tm0) ; entangles tm1 with 
tm0 
  (∧ 
   (s tm0) 
   (¬ (heads-on-same-cell tm0 tm1)) 
   (s tm1) 
   (heads-on-same-cell tm0 tm1) 
   (s tm1) 
   (¬ (heads-on-same-cell tm0 tm1)) 
   ))) 
(test-hook test-heads-on-same-cell-0) 
 

> (test-all) 

(def-type list-tm (tape-machine)())) 
(def-type list-nd-tm (nd-tape-machine list-tm)())) 
(def-type list-solo-tm (solo-tape-machine list-tm)()) 
(def-type  
  list-ea-tm  
  (ea-tape-machine list-nd-tm list-solo-tm) 
  ()) 



118 

♦ 

♦ 

Initialization and the first-rest pattern 

A tape machine can only be created after there is a first item to place in it. 

Consequently code that produces data that is placed in a tape machine will often 

have separate first case and recursive case. 

♦ 

(defun test-dn-0 () 
 (let*( 
     (tm0 (mk 'list-solo-tm {1 2 3 4 5})) 
     (tm1 (mk 'list-solo-tm {-100})) 
     ) 
  (∧ 
   (s tm0) 
   (dn tm0 2 tm1) 
   (equal (tape tm0) {1 2 5}) 
   (equal (tape tm1) {-100 3 4}) 
   (on-rightmost tm1) 
   (= (dn tm0 10 ∅ (be -1) #'echo (be -2)) 9) 
   ))) 
(test-hook test-dn-0) 

(defun test-ea-a◧-0 () 
 (let*( 
     (tm0 (mk 'list-ea-tm {1 2 3})) 
     ) 
  (with-mk-entangled tm0 
   (λ(tm1) 
    (s tm0) 
    (w tm0 22) 
    (a◧ tm0 7) 
    (∧ 
     (equal (tape tm0) {7 1 22 3}) 
     (equal (tape tm1) {7 1 22 3}) 
     (¬ (on-leftmost tm0)) 
     (¬ (on-leftmost tm1)) 
     (eql (r tm0) 22) 
     (eql (r tm1) 1) 
     ))))) 
(test-hook test-ea-a◧-0) 

(get-first 
 {:➜ok (λ(tm) 
     (get-rest tm) 
     )}) 
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In this example, get-first gets a first data item. If that item is not the last item, 

and there was not an error, get-first creates a tape machine and then calls a 

continuation with a tape machine initialized to this data item. get-rest then 

gets the rest of the data items but does not have to create a machine. We call this 

the 'get-first/get-rest' pattern. 

When programming with loops this pattern manifests as 'loop priming'. 

Accordingly work is done before entering a while or for loop, where this 

priming work is a variation of the work done inside the loop. Here get-first 

is the priming part, and get-rest is the loop and its contents part. 

Suppose we want to avoid having two routines, but instead just want a single 

get routine that plays either or both roles. Consider the case where get takes a 

tm parameter. We can pass in ∅, so that get knows it has to create a new 

machine.  

♦ 

When we look inside such a get routine, we will find a test on tm to see if it is 

∅. The true path will execute code which we may as well call get-first, and 

the false branch will execute code which we may as well call get-rest. We 

didn't avoid the get-first/get-rest pattern, rather we just encapsulated it. 

However, we have a problem with get. We cannot create a tape machine in a 

routine and pass it back out though the parameter list, because the tm in the 

routine is a local variable, and we do not have a reference to the tm in the caller. 

Consequently we cannot initialize the caller's machine. We can add to the tape 

when a tm is passed in, but we can't create the first cell. Consequently get we 

will always have to return tm and we end up with this pattern for using get: 

(get tm 
 (if (not tm) 
  (get-first) 
  (progn 
   (get-rest tm) 
 tm 
   ))) 
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♦ 

So we find that the get with a flag approach adds a redundant test each time it 

is called, unnecessarily returns tm, and must redundantly assign to the outer tm 

on each call. It appears to be better to just use the get-first/get-rest pattern 

directly. 

Emptiness 
If a machine could hold any number of elements, including being empty, then 

the get routine discussed in the prior section would not require the return value 

nor outer assignment. 

When defining a conventional Turing Machine in the chapter we were lead to 

make the empty-symbol a distinct property of the Turing Machine, rather than 

including it in the alphabet. We made the empty-symbol distinct in our 

definition because it was special from a computation point of view; namely, all 

the cells of the initial infinite tape held the empty symbol, but a Turing Machine 

cannot write all the cells on an infinite tape, hence those empty symbols could 

not have been put there by a Turing Machine computation. Also we discussed 

the possibility of not having a distinct empty-symbol. 

When we discussed addresses we defined the length of an area to be one greater 

than the differences in between the smallest and greatest addresses. This 

definition has the nice property that an area consisting of a single cell has a 

length of 1. We then used analysis to derive a higher order construct where an 

area might have 0 length.  This created a nuanced difference between zero length 

where we were talking about some area, and that of no area existing at all. We 

found that a zero length area can still have a location. One might think of it as a 

locator for growing the area in the future should we choose to do so, or as a 

marker as to where the area used to be. 

(let ((tm ∅)) 
 (setf tm (get tm)) 
 ) 
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Just as there is no way to compute and make an unbounded empty tape, there is 

also no way to compute and decide if a tape is empty. In analogy to defining an 

empty-symbol, and an area of zero length, it appears that we will need a higher 

order construct (i.e. belonging to a higher order analysis) so that we can keep 

track of an emptiness attribute for the tape as a whole. 

Now consider our Turing Machine variation where our tape grows. Is this 

variation helpful here? What is the minimum sized tape? We never really said 

how many cells we start with. It should have been apparent that the initial tape 

must have at least one cell as the head was said to always be over a cell. Perhaps 

we should have modified our 'always write before read rule', and instead made 

it something like 'always append a first cell before the first write, and always 

write before read'. We would have had to have added a flag to signal that the 

tape had not been created yet, so as to know to append the first cell. Thus, again, 

we have discovered we need additional information. 

The Turing Machine is a mathematical object, whereas the tape-machine is a 

computer programming type, and we deal with instances of this type. However, 

properties of the Turing Machine have implications for our implementation. 

And accordingly we know that we will need additional state information to 

create a tape machine which can be empty. 

Consider our append routine. It is passed in a tape machine instance, say tm-0, 

and an instance of something to be appended, say x. If tm-0 has never been 

written, then the append routine should create a leftmost cell and write x. This 

is appending to an empty active area. I.e. an active area of zero length. However, 

in contrast, if we pass in a machine with the head on the leftmost cell, and that 

cell has already been written, then our append routine should create a new right 

neighbor for the leftmost cell, and write x into that. Here it is appending to an 

active area of length 1. Creating a new leftmost cell, and appending to a leftmost 

cell are fundamentally different operations, and they are being distinguished by 

the length of the active area. However, to keep track of the length of an active 
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area, while including the possibility for zero length, we again find that we need 

an external construct. 

Our experience with emptiness thus far leads to the conclusion that such a 

machine that can appear to be empty will simply be repackaging the flag 

contemplated in the prior section during the discussion of the get-first / get-rest 

pattern. That is to say we will just be moving the logic around, and the pattern 

remains in tact. 

Signaling emptiness with a ∅ tape slot 

A machine in the empty state would have no cells on its tape. In the specific 

case of the list-tm machine, which employs a Lisp list to implement the tape, 

we are tempted to simply use a null pointer in the tape slot to signal that the 

machine is empty. The cost is pretty low, in the case of a null pointer we remove 

one possible encoding for a pointer value that otherwise might be used to access 

memory. Actually, in Lisp, because we have typed pointers, we could use a 

reference to any instance that is not of cons cell type to signal emptiness. 

Signaling emptiness by using a special instance in Lisp, or the use of a null 

pointer, is practical. However, we have another issue with the special tape slot 

(tape field) value approach - we do not require that all machines have a tape 

slot, and when a machine has a tape slot, we do not dictate how it is used. In 

other words, we are specifying an architectural interface, not an implementation. 

Consequently the best we can do is to define a new routine class as part of the 

interface and leave it to those who implement the functionality behind the 

interface to find a way to express emptiness for any tape machine type they 

happen to make. However, it would be much better to have an elegant solution 

at the architectural level instead of leaving it as an open question and relying 

upon ad hoc solutions. 
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Signaling emptiness with a ∅ machine reference 

Instead of using ∅ as a tape reference when the machine is empty, suppose 

instead we use a ∅ reference to a machine to mean the machine is empty. This 

would overload ∅ to mean both that there is no tape machine, or that the tape 

machine is empty. We might generalize and say that ∅ means no data is 

available, no matter what the reason is.  

If we were to do this, argument passing would be a challenge. We discussed this 

issue in the prior section about the get-first/get-rest pattern. Lets look at 

this again a little deeper.  
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♦ 

Here our intention is that routine c7 will add the numerical instance 7 to a list. 

We have created four versions of c7. In the first attempt we try to prepend a 

value by creating a cons cell and assigning that to the passed in argument. The 

second uses the cons without the setf. The third call attempts to append the 7 to 

the list using Lisp's append routine. The fourth one appends the 7 using Lisp's 

nconc routine. All four accept x, the list to be modified. We then call our four 

routines with ∅ so c7 will be initializing the list, then again with a symbol, 'a, 

so that c7 will be modifying the list. We then print the results: 

(defun c7-0 (x) (setf x (cons 7 x))) 
(defun c7-1 (x) (cons 7 x)) 
(defun c7-2 (x) (append x {7})) 
(defun c7-3 (x) (nconc x {7})) 
 
(let( 
   (a0-0 ∅) 
   (a0-1 ∅) 
   (a0-2 ∅) 
   (a0-3 ∅) 
   (a1-0 {'a}) 
   (a1-1 {'a}) 
   (a1-2 {'a}) 
   (a1-3 {'a}) 
   ) 
 
 (c7-0 a0-0) 
 (c7-1 a0-1) 
 (c7-2 a0-2) 
 (c7-3 a0-3) 
 
 (c7-0 a1-0) 
 (c7-1 a1-1) 
 (c7-2 a1-2) 
 (c7-3 a1-3) 
 
 (print "a0-0:")(princ a0-0) 
 (print "a0-1:")(princ a0-1) 
 (print "a0-2:")(princ a0-2) 
 (print "a0-3:")(princ a0-3) 
            
 (print "a1-0:")(princ a1-0) 
 (print "a1-1:")(princ a1-1) 
 (print "a1-2:")(princ a1-2) 
 (print "a1-3:")(princ a1-3) 
 ) 
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♦ 

None of the attempts at initialization worked. Only the last attempt at 

modification worked. The reason the routine cannot initialize the list passed in 

is that it has no reference to the list. x only holds the value ∅. There is no location 

information in ∅, and it is impossible to initialize something when you don't 

know where it is. 

Now consider the case where we try to modify the list, initially we have a 

reference to a list in one of the 'a1 variables', a1-0, a1-1, … etc. When we pass 

this reference into c7, the reference is copied. Then x holds a reference to the 

same instance that the a1 variable referenced.  

In the first routine, c7-0, when we setf on x it modifies x, and so x no longer 

points to the original instance. However the a1 variable is still pointing to the 

original instance.  

♦ 

From the caller's point of view, nothing has changed. In the second routine, c7-

1, cons returns a value, but nothing is done with it. 

In the third attempt to modify the list, c7-2, append is called with x and 7. 

However, append, like cons, is non-destructive. It simply returns a new list that 

"a0-0:" NIL 
"a0-1:" NIL 
"a0-2:" NIL 
"a0-3:" NIL 
"a1-0:" (A) 
"a1-1:" (A) 
"a1-2:" (A) 
"a1-3:" (A 7) 
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is a shallow copy with the new value, 7, appended. This is returned, but we don't 

use it, so nothing happens. 

In the fourth and successful attempt, c7-3, x points to the same instance as the 

a1 variable in the caller. This is the first element in the list. We do not try to 

change this. Instead we go to that first element, and we modify it. nconc is 

destructive (i.e. it does not copy the list like append does). Afterward both the 

a1 variable and x are pointing to the same modified first element, and that 

element points to the new value. 

♦ 

Thus using ∅ to indicate emptiness requires either 1) that we add some sort of 

level of indirection so that callers and routines are referencing the same instance, 

and then the common instance is modified, or 2) the caller somehow gets a 

reference to the original variable in the caller.  

Programmers using the C language often implement option 2 by passing in a 

pointer to the a1 variable (or whatever variable is being used) instead of passing 

in the variable value directly. In this way the routine has a reference to the callers 

version of a1 and can use that reference to set a1 to ∅. Inside of such a routine 

one must dereference the passed in value to see a1. As a1 is also a reference, 

one must dereference twice to see the value a1 is pointing to. We can do 
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something similar in Lisp by passing the argument 'in a box'. Such a box is 

defined in the src-0/functions.lisp file.17 

Of course, macros actually do have access to the caller's variables. 

♦ 

As another issue with using a ∅ reference to mean empty is that we are forced 

to pay the initialization costs for building the container at the point the first item 

is added, rather than incurring that cost at a place of our choosing. For a Lisp 

list, the container overhead correlates directly to the number of cells, and a zero 

cell list has zero overhead, so distinguishing between an empty list and having 

no list is at best moot. In contrast, our tape machines have top level structure 

that exists even when the tape is empty. Depending on the tape machine 

implementation, this top level structure might be complex, and might take some 

time to build. 

Also when we use a ∅ reference to mean empty, we cannot hold the overhead 

state from a prior emptied machine to be reused when a new instance is added. 

We are forced to redo the initialization each time the machine transitions from 

empty to not empty.  

As a third issue, if we want to set the reference to a container to ∅ to mean the 

container is empty, then we must set all the references to the container to ∅, not 

 
17 The box implementation is taken from dmitry_vk's comment on Stack Exchange. 

(defmacro c7 (x) `(setf ,x (cons 7 ,x))) 
 
* (let( 
   (a0 ∅) 
   (a1 {'a}) 
   ) 
 (c7 a0) 
 (c7 a1) 
 (print "a0:")(princ a0) 
 (print "a1:")(princ a1) 
 ) 
 
 
"a0:" (7) 
"a1:" (7 A) 
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just the one we would normally be passed as an argument. The reference to a 

reference approach, or the padding cell approach, works well for solving this 

problem, as all the secondary references will point to a single container 

reference, and only that single container reference need be modified. 

Signaling emptiness using a padding cell 

We used the 'option 1' mentioned in the prior section, that of using a padding 

cell, to facilitate signaling emptiness in the version 0.1 of the Lisp TM Library. 

This technique can still be used of course. The programmer need only ignore 

the leftmost cell in machines. If a machine has only a leftmost cell, then by this 

technique the machine is interpreted to be empty. The need for this appears most 

commonly when a machine is passed into a routine so as to capture a result, 

because we must first create an empty machine (no result yet) and then pass it 

into the routine. The padding cell approach works nicely with our order 1 

machines because they already have a requirement of having at least one cell. 

Here is a version of our c7 program that uses a padding cell. 

♦ 

This sets the reference to the cell after the padding cell, to a node created with 

cons. That node has the value 7 and then points to the rest of the list. The only 

difference from our prior code is that x has been replaced with (cdr x). This is 

done to skip the padding cell. This produces the desired behavior. 

(defun c7 (x) (setf (cdr x) (cons 7 (cdr x)))) 
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♦ 

Note we also use cdr in the print to skip the padding cell. Had we not done this, 

the lists would have printed with a first entry of 'padding.  

Should we delete all the cells in the list, except the padding cell, the list will be 

considered empty. All references to the list are pointing to the padding cell, so 

they don't need to be updated.  

The padding cell approach is related to the reference to a reference. The second 

reference being embedded in the cell. Though we also gain a data value which 

can be used to hold a property list or something similar.  

The padding cell approach is uniform with the structure of the tape when the 

underlying data structure is a list, but will not be so when it is a different 

structure, such as an array or hash table. In those cases we might end up with a 

cons cell used for padding that then points to an array or hash table. 

Using a second order machine 

In the next chapter we will discuss second order tape machines which carry 

status, such as being empty, while wrapping a base machine. The base machine 

may be of any type. The second order machine has its own tape machine 

interface, and watches the operations that goes through it while passing most of 

them to the first order base machine. We use subtypes to represent state (status), 

so the cost is partly hidden by CLOS, which has to do the dispatch work anyway. 

(let( 
   (a0 {'padding}) 
   (a1 {'padding 'a}) 
   ) 
 (c7 a0) 
 (c7 a1) 
 (print "a0:")(princ (cdr a0)) 
 (print "a1:")(princ (cdr a1)) 
 ) 
 
 
"a0:" (7) 
"a1:" (7 A) 
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However, we still have an extra layer of dereferencing when the base machine 

is accessed. 

 Second Order Machines 

Status - status-tm 

Rather than having state bits, we let CLOS keep track of the state by keeping 

multiple specialized types for a status-tm:18 

1. abandoned 

2. empty 

3. parked 

4. active 

An abandoned machine is one that has been especially marked as being left for 

garbage collection. An empty machine acts like there are no cells on the base 

machine tape. A parked machine acts like the head is not on the tape. Though 

the head is conceptually not on the tape, thus not on any cell, it does have a right 

neighbor, and that neighbor is the leftmost cell of the tape of the base machine. 

This definition for a parked head gives us the ability to use the area definition 

of an area being to the right of the head, and to still have an area that includes 

the leftmost cell. Note this additional structure is maintained by the higher order 

construct, i.e. the status machine, and not by the base machine. The base 

machine definition does not change. 

 
18 'Status' means the same thing as 'state', but the word state is already overloaded due to the state 

machine in the Turing Machine definition. I.e. we are calling state in the second level 'status' so as to 
distinguish it from state in the first level. 
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♦ 

Because we are analyzing the operations performed on the base machine, we 

can easily see the steps and keep an address integer, so we take the opportunity 

to do that. This makes it possible to compare locations between status machines 

independent of the base type, and it speeds up simple locations tests and distance 

calculations. 

The programmer only makes status-tm machines. Though internally a 

machine is always one of the specialized types, abandoned, empty, parked, or 

active. These specialized types have no new slots, rather the type tags are just 

being used to tell CLOS which interface to use. 

(def-type status-tm (identity-tr) 
 ( 
  (base ; the machine being managed 
   :initarg :base 
   :accessor base 
   ) 
  (address ; an integer address locating the head 
   :initarg :address 
   :accessor address 
   ) 
  (address-rightmost ; address of the rightmost cell 
   :initarg :address-rightmost 
   :accessor address-rightmost 
   ) 
  )) 
 
(def-type abandoned (status-tm)()) 
(def-type active  (status-tm)()) 
(def-type empty   (status-tm)()) 
(def-type parked  (status-tm)()) 
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♦ 

In this program we create and initialize a solo machine, t0. As always the first 

order machines must have at least one value. Then we create a status machine, 

t1. We park the head of the status machine, and then delete the leftmost instance 

on the tape, i.e. the 1. 

According to our convention though a parked head is not on any cell, the right 

neighbor of the parked head is the leftmost cell of the tape, so the second delete 

also deletes the leftmost cell, which now holds a 2.  

In the next line we step the machine. Stepping the machine will move the parked 

head to it's right neighbor, i.e. the leftmost cell of the tape. We read that value 

as a check, and find that it is 3. Then we park the head again, and then delete 

the last cell. That causes the machine to become empty. 

The initial status of a machine can be created set to empty using :status 

'empty, or to parked by using :status 'parked in the initialization line. First 

order machines must have at least one cell, so when we want an empty status 

machine we first create a base machine with a single cell holding an instance of 

∅. We could have used any value. When a status machine becomes empty, 

including in the initializer, the instance for the last cell is set to ∅ to facilitate 

garbage collection of the last instance. Adding a cell to an empty machine causes 

the machine to transition to the parked status. 

(defun test-status-1 () 
 (let*( 
     (t0 (mk 'list-solo-tm {:tape {1 2 3}})) 
     (t1 (mk 'status-tm {:base t0})) 
     ) 
  (∧ 
   (park t1) 
   (= (d◧ t1) 1) 
   (= (d t1) 2) 
   (s t1) 
   (= (r t1) 3) 
   (park t1) 
   (= (d t1) 3) 
   (typep t1 'empty) 
   ))) 
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♦ 

Entanglement accounting - ea-tm 

ea-tm is a specialization of status-tm. 

When multiple machines share a tape, we say they are entangled. There is a 

synchronization problem when a set of machines are entangled. If any member 

of that set becomes empty, all members of the set must become empty. Typically 

machines keep track of their tape through a reference to the leftmost cell, so if 

any has a new leftmost cell, or the leftmost cell is deallocated, all must update 

their leftmost cell reference. Before deleting a cell from the tape while using 

one machine, we must check that no other machine has a head on that cell. ea-

tm is a specialized status machine that adds an entanglement accounting system 

to keep track of all of the above. 

Entanglement accounting makes it safe to use a tm-haz machine as a base 

machine. This is good news, as both the solo-tm and nd-tm interfaces become 

available simultaneously without collision hazards. 

(defun test-status-6 () 
 (let*( 
     (tm10 (mk 'list-solo-tm {:tape {∅}})) 
     (tm11 (mk 'status-tm {:base tm10 :status 'empty})) 
     (tm20 (mk 'list-solo-tm {:tape {∅}})) 
     (tm21 (mk 'status-tm {:base tm20 :status 'empty})) 
     ) 
  (∧ 
   (a tm11 101) 
   (a tm11 102) 
   (a tm11 103) 
   (typep tm11 'parked) 
   (d◧ tm11 tm21) 
   (d◧ tm11 tm21) 
   (d◧ tm11 tm21) 
   (= (r tm21) 101) 
   (c◧ tm21) 
   (= (r tm21) 103) 
   (s tm21) 
   (= (r tm21) 102) 
   (s tm21) 
   (= (r tm21) 101) 
   (¬ (s tm21)) 
   ) 
  )) 
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♦ 

The entanglements slots (fields) are only used internally by the ea-tm machine. 

Each instance on the entanglements list is an ea-tm machine that shares the 

tape. entanglements is a sort of tape listener list. entanglements is a bilist-

haz-tm machine and is shared by all tape users. entanglements-pt indicates 

the location in the blist-haz-tm for the given machine. We don't actually need 

both of these fields, because entanglements can be recovered from 

entanglements-pt. (We simply make a copy of it, and cue it to leftmost.) 

The abandon routine changes a status machine's status to abandoned, and for 

an ea-tm machine it also removes it from the listener list. An entangled machine 

created using with-entanglements will be automatically abandoned when it 

goes out of scope. 

♦ 

I tried weak pointers instead of having an explicit abandon routine, but the weak 

pointers did not change to ∅ when an entangled machine went out of static scope, 

say after a let form, but rather became ∅ only after they were garbage collected. 

I probably should have expected this, as most instances in Lisp have dynamic 

(def-type ea-tm (status-tm) 
 ( 
  (entanglements 
   :initarg :entanglements 
   :accessor entanglements 
   ) 
  (entanglements-pt ; our location in the entanglements list 
   :initarg :entanglements-pt 
   :accessor entanglements-pt 
   ) 
  )) 
 
(def-type ea-parked-active (ea-tm)()) 
 
(def-type ea-abandoned (abandoned ea-tm)()) 
(def-type ea-active  (ea-parked-active active ea-tm)()) 
(def-type ea-empty   (empty ea-tm)()) 
(def-type ea-parked  (ea-parked-active parked ea-tm)()) 

(abandon tm)  
 
(with-entangled tm-orig (λ(tm-entangled) body*)) 
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extent, they stick around until they are no longer used. We only know they are 

no longer used when the garbage collector runs. This caused machines to remain 

entangled in places the programmer did not expect them to be. In the case of 

status machines, one could park the machines when done with them, so this 

latent existence wouldn't cause a problem with collisions, but I had to ask, if I'm 

going through the effort to park machines when I'm done with them, why not 

just abandon them? 

An additional continuation is added to the interface, that of ➜collision. This 

is invoked if one entangled ea-tm machine attempts to delete the cell that 

another entangled ea-tm machine has its head on. It also makes a nice proof 

target, in some situations, if one can prove that the there can be no collisions, 

then one can use simpler machines. The delete routine ends up looking like this: 
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♦ 

First we call the predicate entangled-on-right-neighbor-cell to check if 

any machine in the entanglement set has a head on the soon to be deleted right 

neighbor cell. If so, we take the ➜collision continuation. If not then we know 

it is safe to delete the cell, even though the base machines might be of type tm-

haz. In this implementation of status we also maintain addresses, so after the 

cell is deleted, we decrement the addresses fields for all the entangled machines 

that have a head to the right of the cell that was just deleted. We can easily check 

which they are as we know the address the head is on for our own machine. 

(defun-typed d ((tm ea-active) &optional spill ➜) 
 (destructuring-bind 
  (&key 
   (➜ok #'echo) 
   (➜collision (λ()(error 'dealloc-collision))) 
   &allow-other-keys 
   ) 
  ➜ 
  (labels( 
       (dec-rightside-addresses (tm) 
        (c◧∀* (entanglements tm) 
         (λ(es) 
          (let( 
             (etm (r es)) 
             ) 
           (when etm 
            (decf (address-rightmost etm)) 
            (when (> (address etm) (address tm)) 
             (decf (address etm)) 
             )))))) 
       ) 
   (entangled-on-right-neighbor-cell tm 
    { 
     :➜t ➜collision 
     :➜∅ (λ() 
        (d (base tm) spill 
         { 
          :➜ok (λ(instance) 
              (dec-rightside-addresses tm) 
              [➜ok instance] 
              ) 
          :➜collision #'cant-happen 
          (o (remove-key-pairs ➜ {:➜ok :➜collision})) 
          })) 
     })))) 
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The entangled-on-right-neighbor routine is just a question of existence for 

a machine with an address one greater than ours. We are pretty careful here not 

to create an intermediate address that can't be represented in the same word size 

as the intermediate bits. Though that is not really necessary in Lisp because the 

addresses are bignums. Still there is nothing wrong with using good form. 

♦ 

Using d to delete cells from an active machine can never make the machine 

empty.  

This is because d deletes the right neighbor cell, so we can never delete 

leftmost. Delete leftmost, d◧ cannot make an active machine empty either, as 

the head will be on some cell, and trying to delete that cell will result in a 

collision. However, status machines can be parked, and a parked machine has 

no head on the tape. If any of the machines in the entanglement set are empty, 

(defun-typed  
  entangled-on-right-neighbor-cell  
  ((tm ea-active) &optional ➜) 
  (destructuring-bind 
   (&key 
    (➜t (be t)) 
    (➜∅ (be ∅)) 
    &allow-other-keys 
    ) 
   ➜ 
  (c◧∃ (entanglements tm) 
   (λ(es ct c∅) 
    (let( 
       (etm (r es)) 
       ) 
     (if 
      (∧ 
       etm 
       (typep etm 'active) 
       (≠ (address etm) 0) 
       (= (address tm) (- (address etm) 1)) 
       ) 
      [ct] 
      [c∅] 
      ))) 
   ➜t 
   ➜∅ 
   ))) 
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then all the machines are, after all they share the same tape. It follows that to 

make a machine empty, it, and all of its entanglements, must be parked. 

♦ 

Here is the code for d◧ on a parked machine. This occurs after the definition 

of three helper routines, which I have omitted for brevity's sake. 

We start with an existence questions similar to that for d, does there exist a 

machine in the entanglement set that has its head on leftmost? If not we begin 

by recovering the instance that is to be spilled. When then look at the address of 

rightmost. If it is address zero, then we make all the entangled machines empty. 

Otherwise we delete the leftmost cell of the machines. We run into a small 

problem though. The base machines are treated like order one machines, so for 

(entangled-on-leftmost (entanglements tm) 
 ➜collision 
 (λ() 
  (let( 
     (spill-instance (ec◧r (base tm))) 
      ) 
   (labels( 
        (delete-0 () 
         (if (= (address-rightmost tm) 0) 
          (make-empty) 
          (progn 
           (step-parked-machines) 
           (d◧ (base tm) ∅ 
            {:➜ok (λ(instance) 
                (declare (ignore instance)) 
                (fix-tapes-dec-addresses) 
                ) 
             :➜collision #'cant-happen 
             :➜no-alloc #'cant-happen 
             }))) 
         [➜ok spill-instance] 
         ) 
        ) 
    (if spill 
     (as spill spill-instance 
       { 
       :➜ok #'delete-0 
       :➜no-alloc ➜no-alloc 
       }) 
     (delete-0) 
     ) 
    )))) 
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the parked machines we have left the base machine heads on the left most cells 

while ignoring them. To compensate for this we scan though the entanglements 

set looking for such cases, and if we find one, we bump the head to the right. 

This will always be possible because at this point we know the machines will 

not be empty after the delete. 

Here is the code for make-empty.  

♦ 

It is defined in the labels section, so there is no defun keyword. The first thing 

that it does is to write ∅ to the leftmost cell of the base machine. We do this so 

that the instance held in the last cell will be garbage collected. We don't actually 

delete the last cell because that would violate the constraints for order one 

machines, which must always have at least one cell. Keeping the last cell around 

also makes it easy to restart an empty machine by just writing a new instance to 

this last cell and changing the status to active. 

Once the last cell's instance is freed, we walk through the entanglement list and 

call to-empty on each machine. to-empty is a routine class, and it will be 

matched with an implementation at dispatch time. For ea-tm machines it will 

call this one routine: 

♦ 

Both ea-active and ea-empty are inherited from ea-tm and neither have any 

additional slots, so we expect the change-class to be safe and not to require 

(make-empty () 
 (w (base tm) ∅) 
 (c◧∀* (entanglements tm) 
  (λ(es) 
   (let( 
      (etm (r es)) 
      ) 
    (when etm (to-empty etm)) 
    )))) 

(defun-typed to-empty  
   ((tm ea-tm)) 
   (change-class tm 'ea-empty) 
) 
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much work. All off the machine states (statuses) have analogous routines. These 

are primitive instructions that are used internally. There are higher order 

versions for abandoning and parking machines available to the programmer. 

Other status changes occur as side effects of operations. 

Machines often reference the tape via a pointer to the first cell in the tape. If we 

orphan the first cell from the tape list, the other machines will no longer be able 

to read the tape. It would be sufficient to call d◧ on each of the entangled 

machine, but instead we chose to add a routine to the first order machine's 

interface to tell each machine that there was a delete, and to hand it a copy of 

the machine with the delete, (update-tape-after-d◧ (base etm) (base 

tm)). This is found inside of fix-tapes-dec-addresses. 

Analogously when we have multiple machines sharing a tape, and we prepend 

a new cell to the front of the tape on one machine, the other machines would not 

know about this change, and thus would have a different, erroneous, view of the 

tape. This is why prepend is not a command for tape-machine or nd-

machine. Hence we have an analogous routine, (update-tape-after-a◧ 

(base etm) (base tm)) that is run after a cell is prepended.  

The existence of the update commands causes us to fall a little short of the goal 

whereby the second order machine uses the programmer interface of the first 

order machines without modification. Though, this may be indicative of the fact 

that we need to add some cell sharing routines to the first order. Currently the 

only routine that explicitly specified to move cells is d with its spilling feature, 

though the cell moving part of that specification is optional, as it must be, 

because implementations such as arrays cannot transfer cells. 

Thread Safe - ts1-tm 

ts1-tm is a thread safe specialization of ea-tm. 

As wonderful as the ea-tm is, it still does not guarantee thread safety for status 

machines. By 'thread safety' we mean that the interface will continue to perform 
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to specification for any order and timing of interface routine calls. Though 

thread safety is a great attribute for the library, this feature does not help the 

programmer to synchronize his or her own data. The programmer must still 

work that out, rather here we just want to make sure that the library doesn't 

break. 

We can already have thread safety with the nd-tm. Though it is hard to imagine 

implementing such a thing as a production code pipe between processes non-

destructively. Perhaps if we sent multiple machines as a bucket brigade, as after 

all, nd machines can be destroyed as whole units by deallocating them. 

Any of the machines may be used in a thread safe manner if we guarantee that 

only one thread at a time has control. Emulated threads are not good enough in 

this respect, as they time multiplex at too low of a level, so an interface routine 

might not complete before the next thread runs. Rather we need something like 

a mutual exclusion lock on the machine, where the owner of the lock may use 

the machine, and the lock is only exchanged at the same level of execution as 

the routine calls. 

When one thread is deleting a cell from a tape, other threads with entangled 

copies of the machine cannot move their heads over said cell because they might 

run off the tracks, so to speak. With arrays that have deleted cell markers it is 

dangerous to read a cell that is being deleted as the deleted cell will have its 

instance set to null. When two entangled machine on different threads delete 

different cells, there can be problems if the cells are neighbors. We have 

analogous problems on the entanglement list, and this reflects up through the 

hierarchy, so that it is not safe to simultaneously abandon two machines 

(because this corresponds to entanglements list deletions), nor to simultaneously 

abandon a machine and delete a cell (because the cell delete will read the 

entanglements list while the abandon may be deleting a cell). We also cannot 

allow head motion on any entangled machine during collision checks, or the 

collision check may turn out incorrect. The entanglements list is also traversed 
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when prepending a new leftmost cell, and when setting the entangled machines 

to the empty state, or moving them from empty to parked. 

With the ts-tm two entangled machines may safely run simultaneously on 

separate threads. An example would be one process putting data into a pipe, 

while the other pulls it out. Perhaps they start stepping on each other's work in 

the middle. We don't want anything to break should that happen. 

The simplest algorithm for creating thread safety, which we call 'algorithm 1', 

is to acquire a common lock for each interface call. Thus each interface routine 

would run exclusively of the others. This simple approach has low overhead. 

Overhead is important, because in general, tape machine interface routines don't 

do much. I explored a couple of more complex algorithms that provided for 

more parallelism, but it wasn't apparent that under typical use they would be 

faster. 

Hence, ts1-tm simply wraps each call in a 'with-recursive-lock-held' 

environment. For example: 

♦ 

We use recursive locks because some routines call other routines in the library. 

As examples, generic routines are composed entirely of calls to other routines. 

We would like to have called the less specialized version of these other routines 

that didn't have the lock wrappers, and thus avoid the redundant lock setting, 

but CLOS does not provide a facility for doing this. 

 Streaming 
Here is a little worker program used for streaming computation, when called, it 

squares the number on tm-source, and puts the result on tm-sink. 

(defun-typed s ((tm ts1-tm) &optional ➜) 
 (bt:with-recursive-lock-held ((deed tm))` 
  (call-next-method tm ➜) 
  )) 
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♦ 

Suppose we have an infinite input stream, and want to process, say, the first five 

instances. Here we set the input stream to the Natural Numbers. 

♦ 

We use universal quantification over an interval of five values to effect our 

count. Upon each count square-worker will do its job. For status-tm machines 

the routine tm-print is currently defined to print the status followed by a pair 

separated by a colon, the first in the pair being the head address, the second 

being the address of rightmost. This is followed by the contents of the tape. 

Square brackets appear around the instance representation corresponding to the 

cell the head is on. This is ad hoc, and likely to change in a later version. In the 

current version our output appears as: 

♦ 

Notice that we had to add (declare (ignore tm)) after the lambda on the line 

with the quantifier. We have no choice, as the quantifier always passes us a copy 

of the machine, but Lisp thinks there is something funny if a variable is passed 

into a routine, and is not used, so we have to tell it we are ignoring the variable. 

We can turn this off, but in other contexts it is useful information. I've thought 

(defun square-worker (tm-source tm-sink) 
 (as tm-sink (expt (r tm-source) 2)) 
 (s tm-source) 
 ) 

(let*( 
   (tm-source (mk-Natural)) 
   (tm10 (mk 'list-nd-tm {:tape {∅}})) 
   (tm-sink (mk 'status-tm {:base tm10 :empty t})) 
   ) 
 (∀* (mk-interval 0 4) 
  (λ(tm)(declare (ignore tm)) 
   (square-worker tm-source tm-sink) 
   )) 
 (tm-print tm-sink) 
 ) 

ACTIVE (4:4) 0 1 4 9 [16] 
T 
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about getting the quantified tape machine from the closure, but we often use this 

feature for giving a name to an evaluated form. 

Also notice that square-worker is called with the same input arguments 

repeatedly. We can make this code more clear by currying those variables out of 

the loop: 

♦ 

Now it is clear that no loop variables are being passed into worker. This is the 

preferred form. In the previous version of the library we supported this form 

with macros, but it can be done equally well with good programming style, so 

the macros are unnecessary.  

We can think of worker as a circuit that has been wired in. tm-source is the 

input over time, tm-sink is the output, and the quantifier is providing the clock 

signal. This is the high order programming model I developed for my 

reconfigurable data path streaming processor at Quicksilver Technologies. In 

that case, each configuration command corresponded to a different worker 

routine. 

 Transforms 
A transform is a tape machine that, like the second order machines, has a base 

machine. Its job is to make that base machine behave a little differently. 

(let*( 
   (tm-source (mk-Natural)) 
   (tm10 (mk 'list-nd-tm {:tape {∅}})) 
   (tm-sink (mk 'status-tm {:base tm10 :empty t})) 
   (worker (λ()(square-worker tm-source tm-sink))) 
   ) 
 (∀* (mk-interval 0 4) 
  (λ(tm)(declare (ignore tm)) 
   [worker] 
   )) 
 (tm-print tm-sink) 
 ) 
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Identity 

The most boring transform is the identity-tr, which simply passes every 

operation to the base machine. This machine has a fully specified interface, 

which makes it useful as a fallback to other more specialized transforms that 

might not have a full interface. 

Affine 

The affine-tr transform is a specialization of the identity transform that 

makes the base machine tape appear to be circular. Affine implements routines 

that have a leftmost or rightmost continuation, or affect their left or right 

neighbors, and then hooks into those. So, for example, when the base machine 

is stepped from rightmost, the affine machine cues the base machine to leftmost 

and takes the ok continuation. 

As of version 0.7 the old affine code has been deprecated, and we haven't 

updated it yet. 

Ensemble 

The ensemble transform makes a group of machines appear to be a single 

machine. The individuals to be grouped can be provided either as a list or as 

instances in the cells of another machine. In the example below we use the :list 

initializer. So, for example, stepping an ensemble steps all of the member 

machines. The prior version implemented transactional behavior, i.e. if any of 

the machines in the group would take rightmost, then none of them would step, 

and the continuation would be taken. In contrast, this version walks down the 

list of member machines, stepping each, and if any takes a rightmost 

continuation, then the ensemble takes the rightmost continuation. When the 

rightmost continuation is taken, the internal members machine will have its head 

on the cell holding the instance of the machine that took the rightmost 

continuation. Here is an example of using ensemble, this test, like all our tests, 

is intended to return t. 
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♦ 

 TM access language 
The TM Library consists of many routines with single letter names, or a single 

letter and a symbol. This is so they can be easily composed to make longer 

commands. It is already the case that when we had a routine that performed the 

same thing that could be done from multiple more primitive routines, we gave 

(defun test-ensemble-0 () 
 (let*( 
    (tm0 (mk 'list-tm {:tape {1 2 3 31}})) 
    (tm1 (mk 'list-tm {:tape {4 5 6}})) 
    (tm2 (mk 'list-tm {:tape {7 8 9 91}})) 
    (tm10 (mk 'ensemble {:list {tm0 tm1 tm2}})) 
    ) 
  (∧ 
   (= (r tm0) 1) 
   (= (r tm1) 4) 
   (= (r tm2) 7) 
   (s tm10) 
   (= (r tm0) 2) 
   (= (r tm1) 5) 
   (= (r tm2) 8) 
   (s tm10) 
   (= (r tm0) 3) 
   (= (r tm1) 6) 
   (= (r tm2) 9) 
   (¬ (s tm10)) 
   (eq (r (members tm10)) tm1) 
   (on-rightmost (r (members tm10))) 
   (c◧ (members tm10)) 
   (on-rightmost (r (members tm10))) 
   (= (r (r (members tm10))) 31) ;this machine stepped 
   (s (members tm10)) 
   (on-rightmost (r (members tm10))) 
   (= (r (r (members tm10))) 6) ;this machine failed to step 
   (s (members tm10)) 
   (¬ (on-rightmost (r (members tm10)))) 
   (= (r (r (members tm10))) 9) ;haven't stepped this one yet 
   (¬ (s (members tm10))) 
   (c◧∃ (members tm10) 
    (λ(tm ct c∅) 
     (if 
      (¬ (on-rightmost (r tm))) 
      [ct] 
      [c∅] 
      ))) 
   ))) 
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it a compound name, for example, esr. However, routines like esr potentially 

have their own implementation, the compounding is simply used to provide a 

descriptive name. Here with the access language stringing the letters together is 

writing a little program that instructs Lisp to run each command one after the 

other. 

♦ 

δ is the routine (interpreted) form, and Δ is the macro (compiled) form. We read 

from left to right, and parameters are removed from the parameters list at the 

right in order as needed. Continuation options are added as appropriate. No 

continuations are shown in the example just above. This access program says to 

step the machine right 3 places, and then to step it left four places, and then to 

read the instance. This program is not identical to just stepping left by one, 

because right stepping might hit a right bound. 

As of version 0.7 we have not implemented the TM Access Language interpreter 

or compiler. 

(δ sn-snr tm 3 4) 
(Δ sn-snr tm 3 4) 



148 

 TM Library summary 

Types 

♦ 

 

Interface 

tm 

♦ 

 

list-tm 
list-solo-tm 
list-nd-tm 
list-haz-tm 
 
bilist-tm 
bilist-solo-tm 
bilist-nd-tm 
bilist-haz-tm 
 
recursive 
 
identity-tr 
ensemble 
 
status-tm 
ea-tm 
ts1-tm 

(defun mk (tm-class &optional init-parms ➜) 
(def-routine-class ec◧r (tm &optional ➜)) 
(def-routine-class ec◧sr (tm &optional ➜)) 
(def-routine-class ec◧sw (tm instance &optional ➜)) 
(def-routine-class ec◧w (tm instance &optional ➜)) 
(def-routine-class esr (tm &optional ➜)) 
(def-routine-class esw (tm instance &optional ➜)) 
(def-routine-class init (instance &optional init-value ➜)) 
(def-routine-class r (tm &optional ➜)) 
(def-routine-class w (tm instance &optional ➜)) 



149 

tm-generic 

♦ 

 

solo-tm 

♦ 

 

solo-tm-generic 

currently there are none. 

nd-tm 

♦ 

 

nd-tm-generic 

♦ 

 

(def-routine-class a◧ (tm instance &optional ➜) 
(def-routine-class d (tm &optional spill ➜) 
(def-routine-class d◧ (tm &optional spill ➜) 
(def-routine-class update-tape-after-a◧ (tm tm-ref)) 
(def-routine-class update-tape-after-d◧ (tm tm-ref)) 

(def-routine-class a&h◨ (tm instance &optional ➜) 
(def-routine-class as (tm instance &optional ➜) 
(def-routine-class as&h◨ (tm instance &optional ➜) 
(def-routine-class c◨ (tm &optional ➜) 

(def-routine-class tm-print (tm)) 

(def-routine-class a◨ (tm instance &optional ➜) 
(def-routine-class entangle (tm-orig &optional ➜)) 
(def-routine-class entangled (tm0 tm1 &optional ➜)) 
(def-routine-class heads-on-same-cell (tm0 tm1 &optional ➜)) 
(def-routine-class s≠ (tm0 tm1 &optional ➜) 
(def-routine-class with-entangled (tm continuation)) 
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haz 

♦ 

 

bi-tm 

♦ 

 

quantifiers 

♦ 

quantified 

♦ 

(def-routine-class d. (tm &optional spill ➜) 

(def-routine-class -s (tm &optional ➜) 
(def-routine-class -a (tm instance &optional ➜) 
(def-routine-class -d (tm &optional spill ➜) 

(defun always-false (tm ➜t ➜∅) 
(defun always-true (tm ➜t ➜∅) 
(defun c◧∀ (tm pred &optional (➜t (be t)) (➜∅ (be ∅))) 
(defun c◧∀* (tm function) 
(defun c◧∃ (tm pred &optional (➜t (be t)) (➜∅ (be ∅))) 
(defun c◧∃* (tm pred) 
(defun ∀ (tm pred &optional (➜t (be t)) (➜∅ (be ∅))) 
(defun ∀* (tm function) 
(defun ∃ (tm pred &optional (➜t (be t)) (➜∅ (be ∅))) 
(defun ∃* (tm pred) 
(defun ⟳ (work) 

(def-routine-class -s* (tm) 
(def-routine-class a* (tm fill &optional ➜) 
(def-routine-class as* (tm fill &optional ➜) 
(def-routine-class asn (tm n &optional fill ➜) 
(def-routine-class s* (tm) 
(def-routine-class sn (tm n &optional ➜) 
(def-routine-class w* (tm fill &optional ➜) 
(defun-typed -s*((tm tape-machine))(c◧ tm)) 
(defun-typed a* 
(defun-typed as* 
(defun-typed asn 
(defun-typed s* ((tm tape-machine)) (c◨ tm)) 
(defun-typed sn 
(defun-typed w* 
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recursive 

♦ 

 

status 

♦ 

(defun increment-to (b &optional (stride 1)) 
(defun decrement-to (a &optional (stride 1)) 
(defun mk-interval (a b &optional (stride 1)) 
(defun mk-Natural () 

(def-routine-class abandon (tm)) 
(def-routine-class park (tm &optional ➜)) 
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This chapter is a review of the C memory model and the nomenclature used for 

talking about it. The original, and still classic, reference on the C language is “C 

Programing Language”, by Brian W. Kernighan and Dennis Ritchie; 2nd edition 

ISBN 978-0131103627. 

The TTCA memory model differs from the C memory model in some subtle, 

and some not so subtle ways. If we are to discuss these differences we will first 

need to have a firm grasp of the C memory model. 

Persistence 
The adjective static applies to things resolved by the compiler, linker, or perhaps 

loader; or by an interpreter without taking into account runtime state. 

The adjective dynamic means something is resolved by executing the program, 

or at least will potentially be resolved that way. 

In the C language lexical scope is a static concept. We can see it when we read 

our program source, but it will be gone by runtime. At runtime we will instead 

have dynamic scope for such things as stack frames and variables. 

The term initialization is a synonym for the first write after data has been 

allocated. When data is exposed after allocation and before the first write, there 

is a hazard that uninitialized will be read, i.e. a read before initialization hazard. 

Generally code is malformed if it reads data before initializing it. The term 

‘static initialization’ means that data was given a value at compile time. 

The C language provides syntax for the initialization of data, though what can 

be done with these C ‘initializers’ is quite limited. When an initializer is applied 

Review of the C memory model
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at compile time to statically allocated data, we say that the data has been 

statically initialized. 

If data is never written again after being initialized, we say that the data is 

‘constant’. Using statically initialized constants (i.e. constants created at 

compile time) often provides the compiler with an opportunity for optimizing 

code. 

The offsets for the fields of a struct are statically initialized constants, and may 

be accessed through the offsetof macro. The compiler may place these values 

directly into the program text, i.e. into the instructions that constitute the 

program. 

If we have a ‘mutability’ service, we might be able to set data to be read-only 

for some duration of time, and not read-only during other times. It is fairly 

common for people to refer to read-only data as being constant; however, when 

mutability can be changed, the compiler typically cannot take advantage of 

read-only status, so it is not really useful to say that read-only data of this type 

is ‘constant’. 

The state machine controller of a Turing Machine is static and constant. This is 

noteworthy because our program is the controller definition for our processor. 

Hence, we would not expect that requiring a program to be a statically initialized 

constant would limit its computational power.  

Allocation and data 
A memory allocation is a block of memory set aside by a memory manager such 

as malloc, which may be safely be used by the program. The memory manager 

maintains a contract with its users that it will never allocate the same memory 

to any two such active allocations. A memory allocation becomes inactive after 

being a call to deallocate it, which in C is done with the routine free. 

An allocated block of memory is analogous to a physical memory device. Like 

for physical memory, an allocation has a fixed size, and data may be written to 
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it and then later read back. On some computing systems physical memory may 

be plugged in and removed, just as a memory manager may be called to allocate 

and deallocate memory. 

Data refers to the values of the bits found on a memory device, and by 

extension, those found within a memory allocation.  

Data may be moved using a copy operation. A copy operation sets the data at 

some destination allocation so that it matches the data at a source allocation. 

The data at the source is not affected, while the data formerly at the destination 

will be clobbered. Because the source data remains in tact, it is possible to copy 

source data to multiple destinations. An exception to this is the case where the 

source and destination are the same. The behavior in such a case is generally 

undefined, but might be defined for specific systems. 

Read and write are not distinct operations from copy, but rather these terms 

describe what happens on one end or the other of a copy operation. 

The most common types of allocation are: static, program stack base, program 

stack, and heap. 

All allocators have two main operations on their interface, allocate and 

deallocate. We say that an allocation is alive after it has been allocated and 

before it has been deallocated. 

The allocation and deallocation operators are commonly shortened to alloc, and 

dealloc. It is also common that allocators of different types use different names 

for the allocation and deallocation operators. 

Register 

Most all processors have a small internal memory called a register file. Each 

register is typically given a name, and in the compiled code this name reduces 

to an integer, i.e. to an address. The general use registers are typically allocated 

and deallocated by the compiler. Some special purpose registers, such as a stack 
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pointer, will typically not participate in the allocation scheme. This happens 

invisibly to the programmer.  

However, even the assignments made by the compiler might not be where data 

is actually put. It is common on modern processors to attempt to reconstruct a 

more parallel execution friendly data flow graph on the fly. False dependencies 

are removed by using what amounts to a larger register file and then renaming 

registers, i.e. mapping them different addresses in the larger register file. If the 

processor is friendly, it will retire results in the same order as they would have 

been retired in the original program without the renaming, so that visible state 

remains the same. 

Hence, programmers really do not have much control over register allocation. 

Static 

The compiler will create a symbol table that associates identifiers with the 

locations of data in memory. Each location will be either an absolute address or 

a relative offset, but in either case it will be a constant. In the C language 

paradigm the goal of the compiler, linker, and loader, is to embed these constant 

location values into the instructions of the program. Unless we have told the 

compiler to keep symbols as debugging information, they will be gone at 

runtime. 

Data that has an absolute address determined at compile time is said to have 

been statically allocated. Such data is only deallocated when the process 

terminates and releases its virtual memory space. For statically allocated data 

all threads will see the same data located in the same place. 

Program stack 

The program stack is an instance of a stack data structure that is automatically 

managed though code inserted by the compiler and actions taken by the 

operating system. Each thread of execution is given its own program stack, 

which is a copy of the stack that the thread was forked from when it was created. 
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Conventionally this stack copy is done in an efficient manner by using the 

virtual memory system and copy on write pages. 

When the program stack is used for memory allocation the allocation operator 

is called push and the deallocation operator is pop, occasionally someone will 

instead call these operations push and pull. For the stack used by C, data is 

pushed in blocks known as a stack frames. Each stack frame will hold the 

arguments and local variables to be used by the routine plus some overhead 

information such as the return address to continue from after the call. 

Static data and program stack base data live for the duration of the program. In 

contrast, stack allocated data comes to life at runtime when a routine is called 

and the corresponding stack frame is pushed, and its life ends when the routine 

returns and the corresponding stack frame is popped. (This concept of life times 

becomes important when we consider memory usage, including register usage 

by programs when compiling. We find that there are both static and dynamic 

concepts of allocation life times.) 

In C a lexical scope starts with an opening brace, and ends with a matching 

closing brace. At least in some compilers, although scope may be nested within 

a routine, all declared local variables will be placed in the stack frame of the 

containing routine. Thus, stack frames are specific to routines, and not specific 

to lexical scope. The enforcement of the nesting of lexical scope within the 

routine is then due to the compiler itself refusing to allow a programmer to make 

use of out of scope variables. Thus there is a difference in C between static 

scoping and dynamic scoping of data. This approach is one method for assuring 

the clean deallocation of local variables even when such things as a goto can 

cause a program to leave a scope level. It also causes allocation to be done only 

once even though a braced lexical scope with variable declarations occurs inside 

of a loop. 

The compiled code will address arguments and local variables at constant 

offsets relative to the base of the routine's stack frame. Routines use stack 
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relative addressing to find their variables, hence the same code will be usable 

without modification against different stack frame instances. I.e. arguments and 

local variables are accessed indirectly through the stack frame pointer. 

However, when we use the ampersand operator, ‘&’, on a local variable we will 

get its absolute address. No matter how far down in the call nesting we go, this 

absolute address will still locate the same value. Placing such an address in a 

generally accessible data structure creates the hazard that the address might be 

locating data that has been deallocated (due to the relevant stack frame having 

been popped), or even that it references allocated data from a new allocation (a 

new unrelated stack frame has been pushed). 

Most programs are written by composing a large number of small routines. 

Routines need to have their arguments in the same place relative to the stack 

frame each time they are called. Consequently a great deal of effort will be spent 

moving data into stack frames before routine calls. This problem inspired AMD 

to provide a ‘fast call’ mode where arguments are passed through registers. 

These moves must be correctly timed before routine calls. Generally all this 

causes the stack to be a bottleneck for both optimization and hardware 

performance enhancements. 

Program stack base 

With ‘program stack base’ allocation, our data is placed in the first stack frame. 

This is the one that will be allocated to the `main()` routine in C. The first stack 

frame is special because it will never be popped off the stack while the program 

is running. This fact causes program stack base data to resemble static allocation 

because that also remains for the duration of program execution. However, there 

is an important difference between these two methods of allocation in that stack 

base allocated data is copied when a new thread is forked, where as static 

allocated data is not. 

The astute reader will note that ‘program stack base’ and ‘program stack’ 

allocation are a first-rest pattern applied to a single program stack. 
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Heap 

With ‘heap’ allocation we have a set of library routines for allocating blocks of 

memory from a free list, then later deallocating them by putting them back on 

the free list. In C it is conventional to use the stdlib routines which define only 

one heap to be shared by all routines. Heap overhead such as the free list base 

pointer will be statically allocated. The one stdlib heap will be shared by all 

threads. Modern versions of the heap have mutex locks already built in so as to 

assure thread safety. 

Like static data, heap data is not copies when a new thread is forked. Heap 

allocation in C is accomplished by calling malloc, which then returns a pointer 

to the allocation. Programmers must be careful and remember that when 

copying such pointers, the heap data is not copied. Heap data can only be 

accessed from one place at a time within a single thread. However, in a 

multithreaded environment, if a heap pointer copy is given to multiple threads, 

it is conceivable that more than one threads will access the same heap memory 

simultaneously. This gets back to our discussion on shared tapes between 

multiple machines. 

Garbage collection (not part of the C memory model) 

Garbage collection is not part of the C memory model. Nor is it part of the TTCA 

memory model. However the technique has become so common that a treatise 

on memory allocation would be remiss for not at least mentioning it. 

With garbage collection, allocation of memory is done explicitly as for heap 

allocation. However, unlike for the heap management of memory, with garbage 

collection the deallocation of data occurs implicitly in the background. One 

method of accomplishing this is for the overhead of a heap block to include a 

reference counter. When no references are left pointing to the allocation, the 

allocation is then put on a 'ready to be cleaned up' list. Periodically the garbage 

collector routine runs, typically on another thread in the background, and goes 

through the 'ready to be cleaned up' list and deallocates all blocks listed. 
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The advantage of this approach over the heap allocation approach is that there 

cannot be bugs of the 'woops forgot to deallocate it' nature. Such 'memory leaks' 

are all too common in code that makes use of heap memory management. 

The C language and its standard libraries have no special support for garbage 

collection. Making use of a custom library for this would be tedious because the 

allocator would have to be told each time a pointer went out of scope, for 

example upon reaching a closing brace after being temporarily allocated. The 

calls would occur in the same places that, if we were using a heap, the 

deallocation calls would occur. Hence garbage collection with C would be no 

less error prone than heap allocation.  

The proposal to modify the C compiler to by adding calls upon hitting the close 

brace of a pointers scope is not sufficient because copies of pointers can be 

made, and in C, they can be made in obviousness ways. If a person works a little 

harder it is possible to limit syntax, find copies, and to track scopes so that it all 

works. However; after do all of that, the language is no longer C.  

I mentioned earlier that conventional processors are typically C machines, and 

you would be correct to surmise that they do not have hardware support for 

garbage collection. In contrast, most processors have hardware support for 

manipulating the program stack. 

Storage Allocation Class Keywords in C 
The C programming language specification speaks of ‘storage allocation 

classes’ rather than allocation types. The language has the storage allocation 

class keywords: register, static, and auto. In the early version of C these 

keywords corresponded to their namesake allocation types, with auto being 

program stack allocation. However over time register has become a hint, 

static has been overloaded with new meaning, and auto has become 

meaningless as in contexts where it may be used it is already the default. 
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Specifying the register storage allocation class is a request to the compiler to 

place the given variable in a hardware register. It is rare to see the register 

storage class keyword used because it is almost always better to let the compiler 

decide what should go into a register, and besides that, the compiler is free to 

ignore the request. Perhaps this becomes important for special purpose 

compilers for embedded systems. 

Historically specifying a variable allocation with the static keyword would 

cause the variable to be allocated statically in memory. This was and still is the 

default for variables declared at global scope even without the static keyword. 

The names of such variables will be listed in the object code, so they can be the 

targets of variables declared with the extern keyword. In old versions of the C 

language this used to be the end of the story. However today the static 

keyword found on variables at global scope now means that said variable is not 

visible outside the source code file it is found in. It is opposite of the old 

meaning as trying to link to it from another object file compiled with an extern 

declaration will not work. 

Routines in standard C are always declared at global scope. Declaring a routine 

is identical to declaring a routine pointer, and a routine pointer is data. Hence 

the static keyword works the same on routines as it does on other data. 

If an inline routine is declared static, and the compiler decides to ignore the 

request to inline the routine, then the inline routine instead becomes a regular 

static routine. Such routines are declared in header files, so to say it is static 

is to mean it is a regular routine linkable within the scope of the file the include 

occurs in. 

In C auto class variables have no external linkage. This typically means they 

are allocated on the program stack. This is the default for variables declared 

inside routines, including inside the main() routine. It is rare to see the auto 

storage class keyword used because this is already the default behavior inside 

routines, and at global scope it is illegal to use it. 
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Values and References 
In C a pointer is an address bound to the type for the data being addressed. There 

is no address type in C, nor any pointer keyword. Instead when declaring a 

pointer C has us make a type declaration with an asterisk proceeding the 

identifier.19 

♦ 

On line 1 of this example data is allocated with the size of an int. C leaves the 

size of an int to be determined by the compiler. Had we wanted to specify the 

size for the int we could have instead included the appropriate header and used 

a type such as int32_t instead of int. 

If these declarations are placed at global scope the data will be allocated 

statically. If they are in the main routine this data will be in the base frame of 

the stack, and if they are made inside another routine, they will be in that 

routine’s stack frame.  

The allocation on line 1 will be associated with the symbol i which will be 

viewable within the lexical scope of the declaration, whatever that happens to 

be. It is not shown here. On the second line we again allocate an int. 

Things get a bit more interesting on line 3 where we have another allocation, 

though this time we are allocating an address rather than an int. On my machine 

ints are 4 bytes and addresses are 8, so this line would create a larger allocation 

than each of the prior two. The compiler will take note that at this address in 

memory we find int type data. 

 
19 The actual case is more complex. Because C allows the programmer to force casting between types, 

programmers can pretend that a pointer is an address by casting it before each use. Historically 
when C programmers wanted to play this game they would use a pointer to char. More recently C 
added the void keyword. A pointer is an address bound to a type, so it follows that a pointer to a 
void type is the same as an address. The compiler then requires that pointers to void type be caste 
to a non-void type before being used. 

  
int i; 
int k; 
int *j = &k; 
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Line 3 also has initialization code. We initialize j to be the address of k. k is 

indeed an integer, so the type contract check will pass without an error and the 

compiler will generate the code to perform this initialization. 

However, all of this is a bit misleading, because at runtime when the processor 

needs to load data from memory, it must know the address of that data. Take for 

example, in a load/store architecture a processor loads data by executing a load 

where the operand of the instruction is the address of the data we desire to load. 

Hence, all data in memory will be accessed through addresses, even when no 

pointer has been declared. When we allocate an address we are often just making 

the address visible to our program rather than creating something new. Once the 

address is visible it may be passed as a parameter to a routine etc.  

After data is loaded it will be in a processor register. If the data is part of the 

observable state of the program, and it is modified by the computation, it must 

be written back to memory. A store instruction performs the inverse operation 

to the load instruction. 

It is possible that a variable will not appear in memory at all and thus not have 

an address. As an example, this can happen when the compiler decides that the 

variable may be allocated in a processor register. As another example, it can 

happen when the optimizer eliminates i altogether. Thus if we take the address 

of i in our source code, we might be doing something that was going to be done 

anyway, or we might be forcing the compiler to not use a register for i, or even 

forcing it to not eliminate i. 

Given all of this, we can see that the C model for data and pointers is only an 

abstraction of what happens at runtime. It is not necessarily inefficient to read a 

value by dereferencing a pointer rather than using it directly, as the processor 

might have to use an address for the load instruction either way. We can examine 

the assembly output of the compiler to get a better idea of how our variables 

were really handled, but even that might not be the full picture, because modern 
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processors will prefetch values, make use of caches, and rename registers so as 

to increase performance. 
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My objective in this volume is to describe a full path from theory to hardware 

definition. My intention is that this hardware is high performance.  I’m not 

planning to implement something like a Lisp machine. Rather we are going to 

work towards compiled code, with an efficient assembly language that 

resembles what we see on contemporary processors of our computing epoch. 

Hence, our next step will be to convert our Tape Machine Unit code from Lisp 

to C. 

In the prior chapter we used the Common Lisp language because of the 

language’s ability to embody formal descriptions. We then used that model to 

explore properties of software. This chapter has a fundamentally different 

objective. 

In this chapter we lay the groundwork for a new language that I am calling 

Wave.  This will bring us closer to the programming model for the TTCA as it 

also mirrors what the TTCA assembly language will look like. 

As of the time of this writing conventional processors are pretty much C 

language machines. Consequently, a good place to start when implementing our 

emulator is to develop a set of macros and techniques for expressing TTCA 

native coding styles in C. The C preprocessor macros and techniques used here 

will also morph into a library used by any future emulators, interpreters, or 

compilers. 

The difficulties we stumble across while developing these macros will serve to 

highlight the differences between conventional processor architectures and 

TTCA. Similarly the manner of speaking we develop for talking about the 

emulator code will help us better discuss the TTCA. And who knows, perhaps 

Introducing the Wave language
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this code will run especially well on conventional processors also. It does look 

to provide some opportunities for deep optimization by compilers. 

Ending our single program stack addiction 
Using a single program stack full of routine specific frames is a horribly 

inefficient way to encapsulate runtime state. Take for example coding the state 

of a loop in C versus that of a recursive call in LISP. State in C programming 

style is typically just a loop control variable, while in conventional Lisp 

programming style there will be a stack frame pushed corresponding to each 

iteration, and these stack frames will typically include routine call overhead, 

local variables and other things that were needed to lead up to the recursive call, 

but not be needed after it. Yet, we push all that stuff, repeatedly. What is a single 

integer in C becomes many kilobytes of data in Lisp. 

Furthermore the existence of a stack causes optimization bottle necks, even for 

C programs. This affects hardware acceleration, compiler optimization, and 

execution models with multiple threads. The conventional compiler cannot see 

beyond the current compilation unit, i.e. source file, so the stack simply must be 

supported. What is required context on the stack, versus what the stack actually 

becomes, is irrelevant because the stack cannot be thrown away. Also a new 

thread gets a whole copy of the stack whether it needs it or not.  

The inline routine feature of C has helped with compiler optimization. Inline 

routines are essentially text macros, and are included from header files, thus 

they are available to the compiler to analyze. However, this also leads to code 

duplication. 

Prior chapters provided examples of multiple return path computation. Those 

examples were given in the Lisp language, where continuations were passed in 

as arguments. When a routine is executed it completes by taking one of the 

continuations. 
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Although the implication of those Lisp examples was that we had efficient 

forward moving computation, the reality was that each of those continuation 

routine calls pushed another stack frame, and we would eventually have to pop 

them all off. This situation was acceptable for out Lisp library because the point 

of developing that library was to study the method and explore its feasibility. It 

was a nice coincidence that the library was also useful for bringing iteration to 

Lisp.  

In this chapter we will untie the knot of dependency on a single program stack 

by identifying alternative techniques for carrying program context forward. We 

will endeavor to make our program into the fixed controller, and to handle any 

growing data by using appropriate containers specifically for that data. We 

surmise this is possible, because a Turing Machine has a fixed controller, and 

all growth of data occurs on the tape. 

Before building a dedicated compiler for Wave we will see what sort of 

assembly code such a compiler must output, and we will do this by coding 

backend code in C. Stack frame push and pop on routine calls and returns are 

intrinsic to the C language, so if we do not want to muck with the compiler itself 

we will have to call our continued routines using goto statements, so that is 

what we will do. 

We will give our new unit of execution a descriptive name so as to break the 

association of our routines with the mental image we all have of a model stack 

push of input arguments and a return pop. We will call our routines instruction 

sequences. In the context of this language this term replaces the more usual 

terms function, routine, subroutine, or procedure. We will have two types of 

instruction sequences, specific use and general use. 

Specific use instruction sequences make use of data within lexical scope, which 

in C includes the goto target labels. This type of instruction sequence is natural 

for a programmer to write when sitting in front of a terminal while coding 

something specifically for his or her own use. 
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General use instruction sequences are reusable. They are the sort we would find 

in a library.  They cannot make use of the context they are called from because 

that context varies depending where the general use instruction sequence is 

called from.  For an instruction sequence to be of general use we must define an 

interface which consists of a list of parameters. At run time these parameters 

will be assigned values called arguments, and they will carry the required 

context forward. 

The code for this chapter may be found at: 

http://www.github.com/Thomas-Walker-Lynch/TM2x 

In the code examples, global variables are all caps with between word 

underscores. Type names and name space names are initial character capitalized 

in each word with words run together. Other identifiers are lower case with 

words separated by underscores. C does not have built in namespace syntax, so 

we will use a center dot character to separate namespace names from the more 

specific part of identifiers. 

Specific use instruction sequences 
An instruction sequence starts with an SQ·def macro call. It takes the sequence 

name as an argument. It ends with a matching SQ·end where the name of the 

sequence must again be provided as an argument. We call an instruction 

sequence by using the SQ·continue(name) macro. Hence, an instruction 

sequence will have this form: 

♦ 

The def macros gives the instruction sequence a goto label. An instruction 

sequence must be reached using a continue call. We should never sequentially 

  
SQ·def(name){ 
 
 <place instructions here> 
     
} SQ·end(name); 
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flow into it. I considered calling abort() in the def macro just above the label, 

but instead elected to add a goto that jumps to the end macro. Hence a sequence 

may be defined anywhere and it will effectively be ignored during sequential 

execution.  

Instruction sequences do not return. All instruction sequences must execute 

another SQ·continue statement or terminate the thread before reaching the 

corresponding SQ·end.  

The specific use instruction sequences defined in this manner have no explicit 

arguments passed in, but they may use any variable that is visible in the outer 

lexical scope.  

Each instruction sequence name must be declared as type SQ·Sequence, twice, 

once just as name, and once as SQ·name. This is of course a hack. Due to 

compiler limitations, instruction sequences must be declared within a routine. 

We will put ours inside of main. 

Implementation notes 

Our instruction sequences are similar in some aspects to gcc’s nested routines; 

however they do not make use of gcc nested routines. Our macros do make use 

of gcc extensions related to labels, so gcc must be used with this code. 

Due to some C language restrictions on goto and labels, our instruction 

sequences may not be defined at global scope. This is probably due to C trying 

to make goto play well with stack based routine calls, and the compiler wanting 

to see both the goto and the label in a single compilation unit. Hence for now 

our sequences must be encapsulated in a routine. We will put them in main. 

Hence everything is going to be surrounded by a big main routine definition. 

All this should make the optimizer very happy. 

We may call C routines from within a sequence. Currently this is a practical 

necessity because we do have instruction sequence libraries for things such as 

i/o. 
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It is possible to pass instruction sequence names into routines by preceding the 

name with two ampersands, &&name. A routine given such arguments might then 

make use of a trampoline by returning one of the sequence pointers. Such a 

return value may be dereferenced with a *, and then continued from it. Actually 

I implemented the first version of these examples by doing this. It had the nice 

effect of that not everything had to go into main; however, I promised to show 

the reader code that actually does not use the stack during calls, rather than just 

looking like it doesn't, so I have removed this from the examples. 

Example 

The following is a simple example using two specific use instruction sequences. 

It is located in the examples directory of the git distribution, and is called 

special_use_instruction_sequences.c. 
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♦ 

Here we have two instruction sequences, reduce and expand. The reduce 

sequence divides an even valued i by two, while the expand sequence multiples 

i by 3 and adds 1. Note on line 29 we declare a local variable called result. 

This variable will be allocated once in main’s stack frame, and only deallocated 

when main returns, i.e. when the program ends. Due to our use of program stack 

base allocation, had this code made use of multiple threads, each thread would 

have its own version of result. However, we do not have multiple threads in 

this example. Here is an invocation: 

#include <stdlib.h> 
#include <stdio.h> 
#include <stdint.h> 
#include <inttypes.h> 
#include "misc.h" 
#include "Sequence.h" 
 
// prints Collatz Conjecture sequences 
int main(int argc ,char **argv){ 
 SQ·Sequence reduce ,SQ·reduce ,expand ,SQ·expand; 
 
 uint32_t i; 
 if( argc != 2 || !sscanf(argv[1], "%" SCNu32, &i) ){ 
  fprintf(stderr ,"expected argument that fits in uint32_t"); 
  return 1; 
 } 
 
 SQ·continue(reduce); 
 
 SQ·def(reduce){ 
  printf("%" PRIu32 "\n", i); 
  if( i == 1 ) return 0; 
  if( i & 0x1 ) SQ·continue(expand); 
  i = i >> 1; 
  SQ·continue(reduce); 
 }SQ·end(reduce); 
   
 SQ·def(expand){ 
  uint64_t result = (uint64_t) i * 3 + 1; 
  if( result > UINT32_MAX ){ 
   printf("exploded!"); 
   return 2; 
  } 
  i = result; 
  SQ·continue(reduce); 
 }SQ·end(expand); 
 
} 
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♦ 

  

Notice on line 17 main continues into reduce. Because reduce is an instruction 

sequence it will never return to line 17. We will only move forward through the 

instruction sequence from this point. Processing proceeds forward as a 

propagating wave. 

i has the value 12, and on line 22 reduce discovers it is even, so it divides it by 

two using a right shift. Then on line 24 reduce continues into itself. Here we 

see something interesting. There is functionality no difference between a 

recursive call and a loop form. This is because nothing is placed on the stack in 

the recursive call, and we will never return from it. It is not just that these two 

forms are functionally the same and one can be transformed to the other, rather 

it is that they are actually identical. 

On the second pass through reduce, i initially has the value six, so this will 

again be divided by two, and we will again re-enter reduce. On our third time 

through reduce, i will have the value 3, which is odd, so then we continue with 

expand. expand multiplies i by 3, adds 1, and then continues into reduce again. 

And thus we continue in a forward manner until at some point on line 22 we 

discover that i is one. At that point we finish the program by returning from 

main. 

In this example, pumping data caused integers to get larger, but did not require 

that the data structures expand. Had we needed an expanding data structure we 

would have used the heap. 

> ./specific_use_sequences 12 
12 
6 
3 
10 
5 
16 
8 
4 
2 
1 
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Here all the only variable shared among the instruction sequences was i, and 

we allocated it on the program stack base. The program stack base allocation is 

thread safe. Each thread gets its own stack. Collectively we call the variables 

used by the instruction sequences a tableau. It is a sort of chalk board where we 

can write things then read them off later. We should put all shared variables 

inside of a struct and given this collection a name, something like tableau_0. 

Doing this would then lead to a discussion of managing tableaux, e.g. whether 

a tableau should be shared among threads, etc. Actually, we will have such a 

discussion in the next section. 

General use instruction sequences 
Specific use instruction sequences such as those shown in the prior section do 

not accept arguments. Instead they have hard coded explicit use variables found 

within one or more tableaux. In our prior section we had one implicit tableau 

which was identical to the lexical scope. 

Hard coding all of the input variable locations has a serious limitation. Say for 

example, if we were to write a specific use instruction sequence that prints the 

value of a variable. Perhaps one that variously prints the values of, say, i, j, and 

k. Because our specific use instruction sequence would have to have the variable 

name hard coded into it, we would need three separate specific use instruction 

sequences, one for each of i, j, and k. This kind of thing is workable, it is 

roughly what a C inline routine does; however in some situations code 

duplication leads to unnecessarily long programs. 

A conventional routine call is usually some variation of the following. The 

processor first pushes the address of the instruction after the call on to the stack. 

A stack frame is allocated on the stack with space for arguments and local 

variables. Then the arguments are copied into it. The processor then jumps to 

the specified routine entry point. The stack pointer is of central importance 

because the routine itself uses it to find its arguments and temporary variable 

allocations. When the routine finishes it pops the stack frame and pushes its 



173 

result. The caller then pops the result, then pops the continuation address that it 

had pushed earlier, and then jumps to it.  

This conventional approach makes it so that each routine has its own memory 

context and its inputs are found in this context. However this comes at the price 

of having to copy input arguments in, being limited to one continuation after the 

routine completes, and having one return value. The limitation of only one 

continuation and one return value causes programmers to generate a lot of ad 

hoc code for dealing with situations where multiple continuations are needed. 

Sometimes a programmer will be pressed for time and chose to not implement 

some of the continuation paths that seem unlikely. This leads to bugs when these 

cases happen to turn out to be needed. Throw and catch are an out of paradigm 

approach for dealing with this problem, and because it is out of paradigm there 

are complications in dealing with the cross stack frame jumps. Typically 

programmers are told to use it only for unusual cases. 

Latent linking 

A C program is first compiled one compilation unit at a time. Such a compilation 

unit is typically a source file along with its included header files. This results in 

an object file. Each object file will have embedded in it a symbol table that lists 

the unresolved symbols and where their values belong in the code. For example, 

if a user calls an external routine, the symbol table will have an entry that 

contains the routine name and the location in the the object files where the 

routine address is to be written when it becomes known. The object code is 

binary, and we would expect such a place to be in the immediate field of a call 

instruction. 

There might be many compilation units, and thus many object files. Hence the 

second step is to call a program called a linker which reads the embedded 

symbol tables in the object files and matches them up and writes in the missing 

addresses into the code. 
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Now suppose that for an instruction sequence we wait until the very last 

moment, just after the call to the instruction sequence, to do a final linking step. 

This combination of an instruction sequence with latent linking would make the 

instruction sequence generally usable. 

Going back to our print example, we would have one instruction sequence that 

prints an integer. However, the linkage of the integer to the instruction sequence 

would occur at time of call, and could be different upon each call. When called 

for printing the variable i, the blank address for the print variable will be filled 

with the address of i. When called for j, the address blank will be filled with the 

address of j. etc. 

The latent linking occurs so late that we no longer have symbols, but rather 

everything has been reduced to addresses. Hence the symbol table used for 

latent linking will be a list of address pairs, the first of the pair being a constant 

pointing at the allocation for the variable being linked in, and the second will be 

the location in the code where this constant is to be written. Each call has its 

own symbol table for performing the latent link step. 

The following is what a symbol table for a latent link might look like.  

♦ 

Line 2 sequence is a pointer to the general use instruction sequence. Line 3 is 

a list of pairs. The first element of each pair is the address on the tableau for an 

input argument. The second element of the pair is the location in the general 

purpose sequence where this address should be written. There are analogous 

pair lists for the results and continuations. 

 1. typedef struct{ 
 2.  SQ·Ptr sequence; 
 3.  SQ·Pairs *args; 
 4.  SQ·Pairs *results; 
 5.  SQ·Pairs *continuations 
 6. } SQ·CallTable; 
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Actually we only need one list, because all the fields here have the same form. 

The form is that of two constant addresses, where the first address is to be 

written at the location indicated by the second. 

When we say list here, we are not saying how that list is being implemented. In 

conventional C code a person might expect to see a null terminated array of 

pairs. If the list is of fixed length, we might use a struct to destructure all or 

part of it. 

To make latent linking work on a conventional machine, we would need to copy 

a code template to a thread owned buffer so that we do not affect other thread's 

view of the code. Then we would perform the latent link by filling in the missing 

addresses for input arguments, results, and continuations. Then we would jump 

to the buffered code. Chances are we would have to change the permissions on 

the virtual page the buffered code is on before we would be allowed to execute 

the code.  

My goal here is to make it so that we can write some realistic TTCA code 

examples just based on the macros; so copying a block of code as data, 

manipulating it, then changing a data pages to a text page while requiring special 

permissions, is more involved than I had hoped for. But never fear pointer 

indirection is here! In the next section we will show how to use pointer 

indirection so as to avoid modifying the instruction sequence code. 

Interpreted symbol table 

With the latent link method the symbol table is used once so as to fix up the 

code immediately before we jump to it. Accordingly only the code that does the 

call reads the symbol table. The instruction sequence itself has no reference to 

the symbol table.  

In contrast, with the interpreted symbol table method the instruction sequence 

refers to the symbol table at runtime. Instead of having blanks that are filled in 
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with addresses, the instruction sequence contains compiled in offsets into the 

symbol table, and these are dereferenced to find the necessary data. 

The following is such an interpreted symbol table. We also call it a link. The 

link terminology comes about from a data flow view of our program, where the 

instruction sequences are nodes, and these symbol tables describe the 

connections between the nodes. 

♦ 

Here, line 3 args is a pointer to a block of pointers to the inputs, line 4 ress is 

a pointer to a block of results, and line 5 lnks is a pointer to a block of 

continuation links. Actually we could have just put all of these pointers into one 

big null terminated array. However, for purposes of illustration it is nice to see 

the structure and to refer to the fields in the structures instead of indexing into 

an array. 

For purposes of illustration in this book I should have added another field that 

points to a tableau allocation for temporary variables. Here temporary variables 

are the same as result variables where these special results will not be used as 

inputs to other sequences. 

Here our latent linker program is called SQ·continue_indirect. We pass in 

our interpreted symbol table. Equivalently, we can use a data flow perspective 

and say that we are following a link. 

♦ 

An instruction sequence will need to reference the link to find its inputs, outputs, 

and continuations. Only one instruction sequence may run at a time in a given 

thread, so for these examples I have opted to keep a thread local variable that 

 1. typedef struct{ 
 2.  SQ·Ptr sequence; 
 3.  SQ·Args *args; 
 4.  SQ·Ress *ress; 
 5.  SQ·Lnks *lnks; 
 6. } SQ·Lnk; 

 
SQ·continue_indirect(lnk) 
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points to the currently active interpreted symbol table, i.e. to the currently active 

link. 

♦ 

In the example github code this declaration is found in the file 

Sequence·Text.h and you will see this file included toward the top of the main 

routine so as to avoid any forward referencing problems. Note that the type 

name is capitalized, while the instance name is lower case. 

The continue_indirect macro sets the active link pointer before calling the 

target instruction sequence. The address of the active pointer is compiled into 

each general use instruction sequence. 

♦ 

If our processor has speculative execution, the reuse of a thread local variable 

will be a bottle neck that the processor runs into when it speculates past 

instruction sequence call boundaries. This looks a lot like the conventional 

bottleneck of running over modifications of the stack pointer; however there is 

an important difference. There is no stack behind the link pointer. It can be 

safely renamed just like any other variable held in a register. 

There are many ways to make a link pointer available to general use sequences. 

Among these alternatives, each general use instruction sequence can be given 

its own allocation for a link pointer. 

Example 
The following code is for a general use special instruction sequence that does a 

kind of multiply that is useful when dealing with inclusive bounds. For example, 

it may be used to find the byte offset to the last element in an array, more 

 
SQ·Lnk *SQ·lnk; 
 

 
 #define SQ·continue_indirect(lnk) \ 
  SQ·lnk = (SQ·Lnk *)&(lnk);   \ 
  SQ·continue(*SQ·lnk->sequence); 
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specifically consider an array of int32_t type cells, with a maximum index of 7, 

8 * 4 - 4 = 28 which can be computed without risk of overflow as 7 * 3 + 7 = 

28. The inputs shown here are a_0, the extent of an array, and a_1, the extent of 

an element. The result is r. 

♦ 

On line 3 we cast the global SQ·lnk to the more specific type 

Inclusive·3opLL·Lnk. All of our example general use sequences start with 

such a cast. Here are the type definitions: 

♦ 

  
 1.  SQ·def(Inclusive·mul_ext){ 
 2.  
 3.   Inclusive·3opLL·Lnk *lnk = (Inclusive·3opLL·Lnk *)SQ·lnk; 
 4.   uint128_t t =  
 5.     *lnk->args->a_0 * *lnk->args->a_1 + *lnk->args->a_0; 
 6.   if( t > address_t_n ){ 
 7.    SQ·continue_indirect(lnk->lnks->gt_address_t_n); 
 8.   } 
 9.   *lnk->ress->r = t; 
 10.   SQ·continue_indirect(lnk->lnks->nominal); 
 11.  
 12.  } SQ·end(Inclusive·mul_ei_bi); 
 

typedef struct{ 
 SQ·Ptr sequence; 
 Inclusive·3opLL·Args *args; 
 Inclusive·3opLL·Ress *ress; 
 Inclusive·3opLL·Lnks *lnks; 
}Inclusive·3opLL·Lnk; 
 
typedef struct { 
 address_t *a_0; 
 address_t *a_1; 
} Inclusive·3opLL·Args; 
 
typedef struct { 
 address_t *r; 
} Inclusive·3opLL·Ress; 
 
typedef struct { 
 SQ·Lnk nominal; 
 SQ·Lnk gt_address_t_n; 
} Inclusive·3opLL·Lnks; 
// retypes SQ·Lnk 
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The Args and Ress structs will hold pointers into the tableau. The Lnks struct 

will hold links to continuation instruction sequences. 

The Inclusive·mul_ext sequence then accesses its arguments and results 

indirectly through the lnk. Hence, every link may specify different places for 

arguments to be gathered from, and different places for results to be written to. 

Note that Inclusive·mul_ext has two continuations, one for when all goes 

well, and one in case the multiply overflows. We call the all goes well 

continuation the nominal continuation. We call the overflow continuation 

gt_address_t_n which stands for ‘greater than the extent of an address type’. 

Note that our multiply only writes a result if the nominal continuation is to be 

taken. 

Here is an example using the general instruction sequence 

Inclusive·mul_ext: 
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♦ 

The include file Sequence·Text.h only holds the global SQ·lnk. The include 

file Inclusive·Text.h holds the definition for mul_ext, as shown above. 

These are included in main so that their data will be stack base allocated. 

The macro SQ·make_Lnk makes instances of the arguments, results, and links 

structures. After those are made we assign the values to their fields. 

#include <stdio.h> 
#include "misc.h" 
#include "Sequence.h" 
#include "Inclusive.h" 
#include "Inclusive·DataTypes.h" 
 
int main(){ 
 SQ·Sequence nominal  
   ,SQ·nominal  
   ,gt_address_t_n  
   ,SQ·gt_address_t_n; 
 #include "Sequence·Text.h" 
 #include "Inclusive·Text.h" 
 
 // result type Tableau 
  address_t a_0 = 541; 
  address_t a_1 = 727; 
  address_t r; 
 
 // make a link 
  SQ·make_Lnk(mul ,Inclusive·3opLL ,&&Inclusive·mul_ext) 
  mul_args.a_0 = &a_0; 
  mul_args.a_1 = &a_1; 
  mul_ress.r = &r; 
  mul_lnks.nominal.sequence = &&nominal; 
  mul_lnks.gt_address_t_n.sequence = &&gt_address_t_n; 
 
 SQ·continue_indirect( mul_lnk ); 
 
 SQ·def(nominal){ 
  if( r == 394575 ){ 
   printf("glorious\n"); 
   return 0; 
  } 
  printf("wrong answer\n"); 
  return 1; 
 }SQ·end(nominal); 
 
 SQ·def(gt_address_t_n){ 
  printf("product unexpectedly overflowed\n"); 
  return 1; 
 }SQ·end(gt_address_t_n); 
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Tableau 
Multiple instruction sequences sharing a tableaux is analogous to object 

oriented programming. In this analogy each instruction sequence corresponds 

to a method, and the tableau corresponds to the encapsulated data. Relative to 

our routine call discussion a tableaux was analogous to a stack frame. These two 

analogies both work because they are both examples of the more general 

concept of memory context.  

A Tableau is a finite object. Programmers can create recursive structures, and if 

they do this, and it leads to expanding state, then that state should be captured 

in a heap managed data structure, such as a list, tree, or queue. The header to 

that data structure will be a finite object that can be placed on a tableau. 

Result centric 

All reads and writes are actually data copies. Similarly, each instruction 

sequence input value is another instruction sequence result value. Yet there is 

an asymmetry. Each instruction sequence reads each input from exactly one 

upstream result. In contrast, each result might need to be distributed to multiple 

downstream inputs. 

Due to this asymmetry a good heuristic for organizing a tableau might be to 

keep results from each given instruction sequence together as a block on the 

tableau, and then use lists of pointers to gather inputs from all over a tableau. 

We call this a result centric tableau. A given instruction sequence then needs one 

pointer per input to find its inputs, and one pointer to find its result block. The 

total number of pointers needed is determined only by the properties of the given 

instruction sequence. 

Our instructions sequences will need some initial inputs. These can be placed in 

a block in our result centric tableau as though they are results from some unseen 

instruction sequence. Alternatively, the input pointers might reach into other 

tableau to locate input data. 
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There can be a hazard with the result centric approach. This hazard occurs when 

a given instruction sequence is called a second time through the same link, and 

clobbers a prior result, but another, yet to be called, instruction sequence still 

needs that prior result. The simplest fix is to use a different link for the second 

call, this different link would point to the same sequence, and to a different result 

block. Another possible fix is to use a FIFO to hold results, rather than a single 

register.  

Input centric 

The dual of the result centric approach is to have a block of inputs and result 

pointers. Most people find this more intuitive. In the least it is convenient when 

sitting in a debugger to be able to see all the inputs together just before stepping 

into a sequence. 

With an input centric tableau, each given instruction sequence needs one pointer 

to find its input block, and a list of pointers for each result, so as to know where 

to distribute the result. Here we see the aforementioned asymmetry as the 

lengths of the result pointer lists are each a routine of how many other 

instruction sequences will use the each result. In contrast to the result centric 

tableau approach, this information is not a property of the given instruction 

sequence, rather it is a property of the data flow graph the sequence occurs in. 

We have an analogous hazard to that of the result centric approach. Suppose that 

a given instruction sequence just ran and its output is to be used by a second 

downstream instruction sequence, but not on its next invocation, but rather the 

one after that. Again among the potential fixes we could use a different link for 

the second invocation, or make one of the inputs to the downstream instruction 

stream a FIFO. 

State variables and messages 

We may allocate on a tableaux variables that are interpreted as the state of the 

program rather than the input or output of instruction sequences. Similarly we 
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can keep messages. The FIFOs suggested above are examples of one possible 

messaging scheme. 

Hardware emulation 

Suppose we have a special situation where we have a collection of instruction 

sequences where no member makes a direct execution call to any other, but 

rather each instruction sequence runs when its inputs change. Now suppose also, 

that we have a rule that an instruction sequence should run if one of its inputs 

changes. 

We modify the link to look something like this: 

♦ 

As usual we have a pointer to the instruction sequence being called at the top of 

the structure. As per the result centric approach, line 3 arg_froms, is a list of 

pointers telling us where to get the input arguments from. As per the input 

centric approach, Line 4 arg_block, is a pointer to a block on the tableaux for 

the inputs. Again like for the result centric approach, Line 5 res_block, is a 

pointer to a block of results. There is no list of continuations, as control flow is 

determined by inputs changing rather than direct invocation. 

To run our program we repeat the following steps until no inputs change: 

1. For each and every link, use the args_from to write the arg_block with 

input values. For each link, if any of the arg_block value is changed by 

the write, put a pointer to it on the execution queue. 

2. If the execution queue is empty, then take the finished continuation. 

Otherwise, pull all the links off the instruction queue and run their 

 1. typedef struct{ 
 2.  SQ·Ptr sequence; 
 3.  SQ·Args *arg_froms; 
 4.  SQ·Args *arg_block; 
 5.  SQ·Ress *res_block; 
 6. } SQ·Lnk; 
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instruction sequences. This will populate each res_block; continue to 

step 1. 

Notice that in step 2 that all of the instruction sequences are independent of each 

other. Hence if our tableau is shared between threads, then we can spawn many 

threads, up to the number of instruction sequences, so as to get the work done 

as soon as possible. Indeed, some of our instruction sequences can actually be 

hardware coprocessors, that run to process their input data. 

We may organize any feed forward data flow graph in levels, with inputs going 

into level 0, and results provided from level n. We add identity routine 

instruction sequences into the levelized graph so that each instruction sequence 

on level n receives inputs only from instruction sequences on level n-1. We have 

an instruction queue for each level. 

With the approach where instruction sequences are scheduled to run whenever 

an input changes, execution time can be wasted on incomplete input sets, where 

one input has arrived but another has not. This is a typical data flow issue. If we 

do not want the spurious firings we must somehow recognize matched inputs 

sets. The data flow solution is to add tags to data and then to match up the tags. 

In superscalars we rename registers and instructions call out registers as 

operands. With a levelizing the data flow graph data remains in sync as it passes 

from level to level. 

The levelized approach also facilitates pipelined execution, by having different 

threads on each level. After the initial pipeline flush, all the level threads launch, 

then rendezvous. After they all rendezvous, the cycle is repeated. Within each 

level multiple threads may also be used to shoulder the work of clearing the 

execution queue. However, depending on the overhead of thread creation, for 

small programs it will higher performance to have a only level specific threads, 

or perhaps even only one thread. The one thread then runs each level in order 

sequentially starting from level 0. 
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This approach works for emulating hardware. For example, our instruction 

sequences could be used to emulating logic gates in a logic circuit. However, 

when this hardware emulation approach is applied to conventional 

programming we have difficulty with instruction sequences that embed 

conditionals that chose one continuation among multiple choices. According to 

the conventional execution model only the chosen continuation would run, but 

with the hardware emulation execution model, all instruction sequences behind 

links that see input changes will run. 

Suppose that we require that a link be called in order to turn it on. In which case, 

monitoring input changes would only affect performance, as the control flow of 

the program would be determined by the calls. Performance might be negatively 

impacted due to all the input comparisons, threads and queuing overhead; or it 

might be positively impacted due to the use of multiple threads. 

Execution queue 

We can throw away the input change checks of the prior example, and keep 

instruction sequence calling and the execution queue. Accordingly an calling an 

instruction sequence puts a pointer to its link on the execution queue. Instruction 

sequences are then pulled from the queue for execution. The queue can be 

shared among real threads and green threads, thus facilitating execution 

management. If we cannot pre-empt instruction sequences, then we would need 

to assure that by design they do not run for too long. 

Latent linking example 
It will often be the case that the implementation of a general use sequences will 

make use of further general use sequences. For sake of discussion, suppose that 

we have five sequences, s0, s1, s2, s3, and s4. Further suppose that s0 is written 

by an application programmer. The application programmer makes use of the 

general use library sequence s1. The application programmer has given s1 two 

continuations, say for sake of discussion they are called nominal and fail. The 
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application programmer probably does not really care how s1 is implemented, 

and in fact that implementation might change with new versions of the library.  

However, s1 does have an implementation. Say for sake of example that s1 will 

declare its own result tableau to be used for sequences inside of it, and thus that 

it will wire up the links between the sequences much like our top level code 

does. Hence, s1 might wire together s2, s3, and s4 and then call s4.  

At runtime s0 will call s1. s1 will then call, say, s2, which calls s3, then s4. 

However, the application programmer only sees s1, and he or she expects that 

s1 will take one of the provided continuations, either nominal or fail. But after 

s1 calls s2, control flow will never go back to s1. Suppose for example the wave 

of execution reaches s4 when it is time to call nominal or fail. 

If s4 is a special use instruction sequence, then we can write s4 to use the 

continuation links originally passed to s1. If s4 is a general use instruction 

sequence, then it will have its own link, but that link will not know anything 

about nominal and fail. Because those were not available until s1 was called. 

What we need to have happen is for s1 to run a latent linker to connect s4 to 

continuations to the nominal or fail continuations. Accordingly upon entry to 

s1, before it continues to s2, s1 copies continuations passed to it to where they 

belong in the circuit of s2, s3, and s4. 

Hence, part of the job of a general instruction sequence that itself makes use of 

general instruction sequences is to finish building the data flow graph, i.e. to 

perform a latent link, before it continues into it first constituent sub-sequence. 

Thus we have a sort of fractal pattern where every invocation of a general use 

instruction sequence has some differential work to be done of the same sort that 

was done when wiring the outer instruction sequences together. 

Here is an example from the TM2x tape implementation. This routine copies 

elements from one tape machine to another. It does this by scaling the passed in 

element extent to byte extents, and then calling copy_bytes. 
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♦ 

SQ·def(TM2x·copy_elements){ 
  TM2x·CopyElements·Lnk *lnk =  
   (TM2x·CopyElements·Lnk *)SQ·lnk; 
 
  // tableau 
  address_t src_byte_0; 
  address_t dst_byte_0;  
  address_t ext_byte_n; 
  
SQ·make_Lnk(scale_src,Inclusive·3opLL,&&Inclusive·mul_idx); 
SQ·make_Lnk(scale_dst,Inclusive·3opLL,&&Inclusive·mul_idx); 
SQ·make_Lnk(scale_ext,Inclusive·3opLL,&&Inclusive·mul_ext); 
SQ·make_Lnk(copy_bytes ,TM2x·CopyBytes ,&&TM2x·copy_bytes); 
 
  scale_src_lnks = (Inclusive·3opLL·Lnks) 
   { .nominal = AS(scale_dst_lnk ,SQ·Lnk) 
    ,.gt_address_t_n = lnk->lnks->src_index_gt_n 
   }; 
  scale_dst_lnks = (Inclusive·3opLL·Lnks) 
   { .nominal = AS(scale_ext_lnk ,SQ·Lnk) 
    ,.gt_address_t_n = lnk->lnks->dst_index_gt_n 
   }; 
 
… 

 



188 

♦ 

The only macro that has not yet been discussed thus far is AS. AS is a strong, no 

warnings given, cast. The above code uses the same format as we have been 

following up to this point. First it declares a result centric tableau. Then it 

declares the topology. After creating the links it wires up the connections 

between the sequences. Notice that during this wiring up the sequence step, it 

copies-down links from SQ·lnk (which has been cast to a more specific type 

and is now just called lnk) It then ties the arguments and results of the local 

sequences into the local result centric tableau.  

  
   scale_ext_lnks = (Inclusive·3opLL·Lnks) 
    { .nominal = AS(copy_bytes_lnk ,SQ·Lnk) 
     ,.gt_address_t_n = lnk->lnks->src_index_gt_n 
    }; 
   copy_bytes_lnks = (TM2x·CopyBytes·Lnks) 
    { .nominal = lnk->lnks->nominal 
     ,.src_index_gt_n = lnk->lnks->src_index_gt_n 
     ,.dst_index_gt_n = lnk->lnks->dst_index_gt_n 
    }; 
 
   scale_src_ress.r = &src_byte_0; 
   scale_dst_ress.r = &dst_byte_0; 
   scale_ext_ress.r = &ext_byte_n; 
 
   scale_src_args = (Inclusive·3opLL·Args) 
    { .a_0 = lnk->args->src_element_0 
     ,.a_1 = lnk->args->element_byte_n 
    }; 
   scale_dst_args = (Inclusive·3opLL·Args) 
    { .a_0 = lnk->args->dst_element_0 
     ,.a_1 = lnk->args->element_byte_n 
    }; 
   scale_ext_args = (Inclusive·3opLL·Args) 
    { .a_0 = lnk->args->element_n 
     ,.a_1 = lnk->args->element_byte_n 
    }; 
   copy_bytes_args = (TM2x·CopyBytes·Args) 
    { .src    = lnk->args->src 
     ,.src_byte_0 = &src_byte_0 
     ,.dst    = lnk->args->dst 
     ,.dst_byte_0 = &dst_byte_0 
     ,.byte_n   = &ext_byte_n 
    }; 
 
  SQ·continue_indirect(scale_src_lnk); 
 
 } SQ·end(TM2x·copy_elements); 
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Tableau optimizations 
Allocations on the tableau have lifetimes. For sake of example, say the given 

lifetime of an allocation spans from t0 to t7 inclusively, and the lifetime of 

another allocation spans from t11 to t21. Then the second allocation can use the 

same memory as that used by the first allocation. A couple of examples follow. 

Consider single threaded execution with a result centric tableau. Only one link 

can be active at any given time. Suppose the active link is l_0. Now examine 

the input pointers for all downstream links from l_0. These can be found by 

traversing the continuations. If none of these downstream links have inputs that 

point to an upstream link's result block, then the upstream result block can be 

deallocated. Given a data flow diagram we can perform this analysis on a per 

node basis at compile time. 

As another example of optimization, consider the case of single threaded 

execution over a levelized data flow diagram. When we are at any given level, 

say level n, then we know that allocations associated with all prior levels can be 

released. 

Streaming 
One option for streaming is to use stack allocated tableaux and then to spawn a 

new thread for each new input data set. If we want to keep results in order, we 

will have to keep track of the order that the threads were spawned in, and to 

collect the output data in that order. 

Another option for streaming was described earlier, and that is to create a a 

levelized data flow graph of our code, and then to run data through as pipeline. 

Scheduling 
Because continuations do return, they are convenient to schedule .. 
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Mathematical notation for discussing tapes 
Programs reference a cell using an address. In turn a cell holds a value. In the 

section, Allocation and data, we noted that reads and writes occur in pairs, i.e. 

the actual operation performed when reading a memory is a copy. Read data 

must be held somewhere, and written data must come from somewhere. An 

exception to this is in the Turing Machine, where a value read from the tape is 

acted on by the state controller and is not copied anywhere. Analogously in a 

processor, the value in a register might be read by an ALU or affect branching 

instead of being written to another register. Generator routines can produce data 

that did not come from a memory, yet the data is written to a memory. 

When reading from a cell with a given address there are two steps. First the 

address is used to find the cell. Secondly the value of the cell is copied 

somewhere or acted upon. The need to have the cell as separate entity from the 

contained value was discussed in the section, Need for the concept of cell. In 

brief, discussions about connectivity refer to cells, and discussions about 

computation refer to the values in those cells. 

In this chapter we wish to introduce a mathematical notation for talking about 

tapes, addresses, cells, and the values held in cells. As usual with mathematical 

discussions we will need to name things. We will refer to tapes using the letter 

‘t’ followed by something that makes the name unique to a specific tape, often 

a number. Here are some example tape names: 𝑡0, 𝑡1, 𝑡2 … 

To give a name to a particular cell on a tape we will use the tape name as a 

function, where the argument to said function is the name of the cell, or an 

Implementing a tape machine in C
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address. For example 𝑡0(𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡) refers to the leftmost cell on tape 𝑡0. An 

address might also be used, so 𝑡0(0) also refers to the leftmost cell of t0. 

In order to access a cell, we use the access operator, ∗ as a superscript. Hence, 

𝑡0(0)∗ is the contents of the leftmost cell on tape 𝑡0. (This use of the asterisk is 

distinct from that of the Kleene star.) 

The name of an address will start with an 𝑎. If it is not clear from the context 

which tape’s address space the address occurs in, then the tape name is given as 

a subscript e.g., 𝑎௧଴ being an address from the address space of tape 𝑡0. When 

we are describing a function that returns an address, the function name will start 

with 𝑎. The address space for a tape is signified using a quantifier. Hence ∀𝑎௧଴ 

is the address space for tape 𝑡0. 

Analogously, cell names start with the letter 𝑐. If we need to make clear which 

tape the cell belongs to we put the tape name as a subscript. The space of all 

cells on tape 𝑡0 is ∀𝑐௧଴. In order to name the address that corresponds to a given 

cell, we place the cell name in parenthesis after the letter 𝑎. Hence,  𝑎(𝑐)  is the 

address of cell c. Going the other way, if we want the cell that corresponds to a 

given address, that is 𝑐(𝑎). 

Thus the letters 𝑎 and 𝑐 are used both for variable names and function names. 

Typically it is clear when they are functions due to the parenthesis that follow. 

If this is not the case, then the distinction must be made clear by the context. 

Some examples: 

𝑐൫𝑎(𝑐)൯ = 𝑐 

𝑎൫𝑡0(0)൯ = 0 

𝑎൫𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑐)൯ = 𝑎(𝑐) + 1 

An address space for a given tape can be specified with an interval, or as noted 

earlier, with a qualifier: 

[𝑎(𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡), 𝑎(𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡)] 
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∀𝑎 

Area as a mapped tape abstraction 
In the earlier section, Addresses and cells, we defined an area of a tape based on 

values in consecutive cells having a given property. An area could then be 

marked by a machine that traverses the tape cell by cell while checking each 

value for that property. In the case that there is no such value with said property 

on the tape, our marking machine would never halt. Also in the case that all cells 

to the right have the property, our marker machine would never halt. 

We might avoid running the marker machine in the first place by analyzing the 

generator machine that created the tape data. We would look to see if this 

generator ever produces a value with said property, and having done that, ask 

the second question if there is a cell to the right that does not have the property. 

Without putting constraints on the property we are looking for and without 

knowing the initial values given to the generator tape, analysis might not be 

sufficient for determining these things. 

If we know that the tape was produced by a computational machine, our data 

will be finite in length. We can require that the computational machine add an 

end marker. If the data is compact (no embedded empty cells), and the property 

we are looking for is not that of an empty cell, then the end marker could be the 

empty symbol. 

A marked area will have a leftmost marked cell, consecutive right neighbor 

marked cells, and then optionally end at a rightmost marked cell. Hence, it fits 

the definition of a tape. An area is thus a sort of sub-tape. 

We can constrain our property marking machine look at addresses and see 

certain addresses as the marked property. It could then mark all the cells in a 

given address interval. A machine that is constrained in this manner will always 

halt. We can then consider an area to be an interval of addresses. 

 



193 

As per convention each tape has an address space that starts with the leftmost 

cell at address zero. Thus we may express the correspondence between 𝑡0 and 

𝑡1 cells as functions on the addresses:  

𝑎௧଴,୲ଵ(𝑎௧ଵ) = 𝑎௧଴,௧ଵ(0) + 𝑎௧ଵ 

𝑎௧଴,୲ଵ
ିଵ (𝑎௧ଵ) = 𝑎௧ଵ,୲଴(𝑎௧଴) = a୲଴ − 𝑎௧଴,௧ଵ(0) 

Here 𝑎௧଴,௧ଵ is the address map going from 𝑡1to 𝑡0. The reverse map is 𝑎௧ଵ,௧଴. 

For this to work we must be given the base address of the area, 𝑎௧଴,௧ଵ(0).  

This generates the set of matched address pairs: 

∀a୲ଵ: {< 𝑎௧଴(𝑎௧ଵ), 𝑎௧ଵ >} 

♦ 

This mapping cannot be derived through analysis even when including the 

definition of 𝑡1, because the information 𝑎௧଴,௧ଵ(0) cannot be found on either 

tape. 

We have a special name for 𝑎(𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡) of a tape. We call it the tape’s extent 

and we signify it with the symbol 𝑛. When we need to make clear which tape’s 

extent we are signifying we add a subscript with the tape name, e.g. 𝑛௧ଵ. The 

length of a tape will always be one greater than the extent, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1) =  𝑛௧ଵ +

1. Because an extent is an address, it will always be representable in the same 

number representation that is being used for address. We cannot say the same 

for a tape’s length. Programmers assuming that length fits in the same number 

representation as an address has been the source of bugs since the beginning of 

 

Figure 8 Area as a tape abstraction 
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computing.  Hence with our Wave language we only use the extent for bounding 

address space even if it is the address space for an abstract tape. 

A symbol table is a real world example of an external structure used to hold the 

otherwise missing information about the mapping of an abstract tape to the 

concrete tape. Typically each line in such a table will define  𝑡1 by providing its 

extent, the value for 𝑎௧଴,௧ଵ(0), and perhaps a flag to signifying if 𝑡1 is empty. 

The < 𝑎௧଴,௧ଵ(0), 𝑛௧ଵ > pair describes the address interval [𝑎௧଴,௧ଵ(0), 𝑎௧଴,௧ଵ(0) +

𝑛௧ଵ].  

The cells referenced by this interval of addresses form our more constrained 

definition for the location of an area. If we want to account for overlapping 

areas, we may place the address intervals into an interval tree. Real world 

symbol tables will also give each area a name. This name is used as a key for 

identifying the area. 

If order must be maintained among multiple areas, where some areas might 

either have the same base address, or not have a base address at all, then we 

must add some accounting for the missing order information. One possible 

implementation is to add link columns to the symbol table. For each line in the 

table that must be ordered, links would be written into these fields. One link 

would reference the table line for the left neighbor area, and the other for the 

right neighbor area.  

Area mappings and destructive operations 
System memory cannot be destroyed, and for a given process this property is 

maintained to a great extent by the virtual memory system. Consequently we 

typically don’t see the problems associated with destructive programming 

techniques until we implement data containers, or deal with other types of 

memory such as mass storage.  

Containers that have many destructive operations typically identify members by 

using a key rather than an address. When using the approach of keys, when a 



195 

program writes to a container, the container will return a key. Later when the 

program desires to read the previously written contained value, the program 

provides the key to the container. Unlike addresses, associative keys have no 

enforced relationship between each other. When given key 𝑘, which is 

associated with cell 𝑐, we cannot conclude that the right neighbor of 𝑐 will have 

a key of 𝑘 + 1, etc. In contrast, with addresses, provided that the right neighbor 

exists, we can conclude this. 

When we delete a cell from a tape, the neighbor relationships for the 

surrounding cells change. Take for example three neighbor cells on a 

tape …ABC....  After deleting cell B, the tape will have …AC…. The cell A 

becomes the left neighbor of C, and C becomes the right neighbor of A. Now 

suppose that initially the addresses of cells A, B, and C were 7, 8 and 9 

respectively. After deleting B are we to change our increment operator such that 

7+1 results in 9?  As another example, again consider a tape that is 

initially …ABC…, suppose we add a new cell, say cell D, resulting in a tape 

of …ABDC…  Again the neighbor relationships have changed. The right 

neighbor of B was C, but now it is D, etc. What address should be bound to new 

cell D?  Perhaps 8½?  That is not an unsigned integer, so to do something like 

this would cause us to have to use a different data type for addresses, and still it 

would be unclear as to how to generate addresses in sequence. 

If each address is to be uniquely bound to a corresponding cell for all of time, 

then address spaces will have holes where cells were deleted, and hiccups for 

where cells were added – as we saw in the examples given in the prior 

paragraph. If we are to support iteration we will be forced to add an accounting 

system for these holes and hiccups. After many various destructive operations 

on a tape the information about the topology of the tape will no longer be 

reflected in arithmetic on the integers; rather it will be found in the accounting 

system. In essence our addresses will turn into mere associative keys. 
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Consulting an accounting system while iterating will be less efficient than 

simply incrementing an integer. 

Another approach is to say that each address does not remain bound to the same 

corresponding cell for all of time, but rather the invariant is that addresses are 

always step counts into the tape. After a cell is deleted, cells to the right of the 

deleted cell have their addresses decremented. After a cell is inserted, cells to 

the right have their addresses incremented, making an address available for the 

newly inserted cell. The difficulty with this approach is that addresses might be 

held as values in external variables, so the values in those variables might have 

to be adjusted. To make such an adjustment we will have to know where all such 

variables are located. 

Yet another approach is to not use addresses, but instead to provide an interface 

for traversing the underlying tape. We see such an interface in Lisp where 

programs are written in terms of first and rest operations. However, because 

system memory is accessed through addresses, the connections between cells 

will likely be expressed by using embedded pointers, i.e. addresses. Indeed in 

Lisp each cons cell contains a value and a next cons cell pointer. Hence the 

approach of using an interface might hide the problem behind the interface, it 

does not solve it. It least not in the cases where the contain is implemented over 

conventional memory. 

Among these three approaches, only the one that keeps addresses as step counts 

as the invariant is faithful to our original definition of addresses being step 

counts. Hence, this is the model we use in this book. 

Arrays 
In the prior section we discussed mapping the cells on an abstract tape 𝑡1 in a 

one-to-one to manner to cells on tape 𝑡0 and we embodied the map using address 

functions. In this section we will broaden this definition and allow that each cell 

on a tape 𝑡2 to potentially be mapped to many 𝑡1 cells, and as tape 𝑡2 has many 
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cells, we will potentially end up with many 𝑡1 tapes, say 𝑡10, 𝑡11,... Where each 

𝑡1 tape abstracts an area on a 𝑡0 tap.  

For the discussion of this section we add some constraints. When a 𝑡2 cell is 

mapped to many 𝑡1 cells, those cells must start at leftmost and be contiguous. 

Also each of the potentially many 𝑡1 tapes must have the same length and map 

to contiguous areas of 𝑡0. In conventional terminology such a tape 𝑡2 is said to 

be an array, and the 𝑡1 tapes are said to be elements of the array. The compiler 

or interpreter maintains the fiction that these abstractions are concrete. 

In the following figure shows the t2, multiple t1s, t0 hierarchy that defines an 

array. In prior tape figures I have shown the addresses next to the tapes so as not 

to confuse them for tape contents. Here I put the addresses directly in the boxes 

that represent the cells. I did this to keep the diagram compact. Of course, 

addresses are not cell contents. 

♦ 

Our address mapping functions for an array are: 

𝑎௧଴,୲ଶ(𝑎௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + (𝑛௧ଵ + 1) ∙ 𝑎௧ଶ 

𝑎௧଴,୲ଶ
ିଵ (𝑎௧ଶ) =  𝑎௧ଶ,୲଴(𝑎௧଴) = ൫𝑎௧଴ − a୲଴,୲ଵ଴(0൯) 𝑑𝑖𝑣 (𝑛௧ଵ + 1) 

In conventional terminology for arrays address 𝑎௧ଶ is said to be the index., and 

the value (𝑛௧ଵ + 1) ∙ 𝑎௧ଶ is called the offset. The value 𝑎௧଴,௧ଵ଴(0) Is the base of 

the array. 

 

Figure 9 Array as a tape abstraction 
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As an example, suppose that 𝑡0 is system memory and each cell is a byte, while 

𝑡2 is an array where each element is a word. With 32 bit words the extent of 

each element, 𝑛௧ଵ, will be 3. For 64 bit words it will be 7. Conventionally system 

memory is in bytes, but we consider each byte to be 8 bits. If we wanted we 

could create abstract tapes for the bytes, where addresses on those tapes go from 

0 to 7. 

We may remove the potentially overflowing ‘plus one’ by introducing an 

intrinsic multiply operator, ◬: 

𝑎௧଴,୲ଶ(𝑎௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + (𝑛௧ଵ + 1) ∙ 𝑎௧ଶ 

𝑎௧଴,୲ଶ(𝑎௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + 𝑛௧ଵ ∙ 𝑎௧ଵ + 𝑎௧ଶ 

𝑎௧଴,୲ଶ(𝑎௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + 𝑛௧ଵ ◬ 𝑎௧ଶ 

Let us continue the prior example where the elements of tape 𝑡2 are words. We 

know that the maximum address in each the 𝑡1 address spaces is 𝑛௧ଵ . (This is 

the address of the rightmost cell for each 𝑡1 tape.)  However suppose we wanted 

to instead know the address for the leftmost byte on 𝑡0 for the last element of 

the array 𝑡2. This address is the points to the rightmost element in the array on 

𝑡2. This address will be,  

𝑎௧଴,௧ଶ(𝑛௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + (𝑛୲ଵ + 1) ∗ 𝑛௧ଶ 

𝑎௧଴,௧ଶ(𝑛௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + 𝑛୲ଵ ∗ 𝑛௧ଶ + 𝑛௧ଶ 

𝑎௧଴,௧ଶ(𝑛௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + 𝑛୲ଵ ◬ 𝑛௧ଶ 

This result only makes sense because 𝑛௧ଶ is an address, so we are just plugging 

it into the prior formula for translating addresses. 

Now suppose we want the 𝑡0 address of the rightmost byte in the rightmost 

𝑡1 word. For this we need to add in the extent of the word to the prior equation: 

𝑎௧଴,௧ଶ(𝑛௧ଶ) + 𝑛௧ଵ = 𝑎௧଴,௧ଵ଴(0) + 𝑛୲ଵ ∗ 𝑛௧ଶ + 𝑛௧ଶ + 𝑛௧ଵ 

𝑎௧଴,௧ଶ(𝑛௧ଶ) = 𝑎௧଴,௧ଵ଴(0) + 𝑛୲ଵ ⊡ 𝑛௧ଶ 
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We call ⊡ an extrinsic multiply. It also will not overflow an address number 

representation. The value 𝑛௧ଵ ⊡  𝑛௧ଶ is the extent of the array on 𝑡଴. 

We now have three concepts for speaking of the size of things. Distance is the 

difference between two addresses that belong to the same address space. The 

concept of distance is independent of any property of the cells being addressed. 

It is purely an address space concept. Extent is the largest address in the tape 

abstraction of an area. Length is a count of cells in an area, and will be one larger 

than the extent. It is a memory allocation concept. Yet another related term is 

that of size. Size is the number of cells used for holding an object. Data 

alignment issues might cause us to need a larger length in memory to hold an 

object than its size. 

Clean array iteration 
Suppose we desire to iterate in a manner that there is no danger that our 

expression of bounds will require a larger number representation than the one 

we are using for indexes we.  There is a problem in the conventional approach 

because the bound is one greater than the largest index, which is the same as the 

length of the array. 

♦ 

0  index of the leftmost cell 
n  Greatest index. Extent of the array 

n+1  length of the array 

For sake of discussion, suppose that we have some sort of simple controller, and 

our fundamental type is a byte, even for addressing. Or similarly that we desire 

for our memory access to remain on a single page of virtual memory, where 

pages are 256 bytes, and thus the page offset is a single byte.  

Now suppose we desire to iterate through this area of memory. An index into 

the array, i.e. an address to a cell on our tape, will fit in 8 bits, i..e. one byte. 

With such an index we can address any cell, including the one with the 

maximum index, cell index 255. Yet, it is conventional in computing to use the 
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length of an array as an exclusive bound in loops. For example we might have 

something like: 

♦ 

When using a one byte integer the bounding value n+1 will overflow, and 

typically wrap back to zero. In this case the loop would not be entered.  

If we expand the representation of the bounding value to n+1 to two bytes, then 

we can represent 256, and thus we will enter the loop. This is wasteful as about 

half the bits are not used, but at least we can represent this outer exclusive 

bound.  

Instead we could try to fix the problem by changing the loop test so that the 

bounding value would be n:  

♦ 

However now there is a different problem. On what is to be the last pass through 

the loop we will increment i from 255 to 256, but i is one byte, and this will 

typically wrap i back to zero. Zero is less than 256 so, far from fixing the 

problem, we have made it worse. This loop will run forever. 

The only reason that we have these end cases is because we are thinking in terms 

of exclusive bounds. Instead of saying "tell me if you cannot stay on the tape", 

we are saying "tell me if you go off the tape". 

i=0; 
n=255; 
while( i < n+1 ){ 
 printf(“i: %u\n” ,i); 
 ... 
 i++; 
} 
 

i=0; 
n=255; 
while( i <= n ){ 
 printf(“i: %u\n” ,i); 
  ... 
 i++; 
} 
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In addition to potentially causing program errors, we have also potentially create 

some hazards for enhanced performance hardware. When a processor tries to 

increase performance by watching a pointer and pre-fetching data when an 

address value changes, it might walk off the current page resulting in an 

unnecessary data fetch and possibly a page miss. If the next page does not exist 

we will have to distinguish between page faults caused by prefetches from real 

ones caused by program behavior. If we return some data anyway, we might 

have security issues.  

If we instead use inclusive bounds we do not have these end cases. Because the 

bound is in the area that we are iterating over, it will be representable in the 

same data type as an index. 

♦ 

 C does not have a built in inclusive bound loop structure, so here we construct 

it using a label and a goto. Note the entry into the loop is not guarded. This goes 

back to our discussion on orders of computation and emptiness. Here we are 

working with first order areas. The smallest array occurs when the leftmost cell 

index is zero, and the extent is also zero, i.e. when the area has one cell. We 

must add a second order structure to support the concept of the array being 

empty. 

i=0; 
n=255; 
loop:{ 
 printf(“i: %u\n” ,i); 
  ... 
 if( i < 255 ){ 
  i++; 
  goto loop; 
 } 
} 
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♦ 

For the TTCA we will use extent values and inclusive bounding instead of 

length values and exclusive bounding.  

Sometimes we desire to change the units the extent is measured in. Say for 

example we have an array with an extent of 31 as measured against 32 bit 

integers. Now we would like to know the extent of the array in bytes. The extent 

of a 32 bit integer is 3 bytes. We may use this information along with a special 

multiple instruction to find the answer: 

 mul_ext(3 , 31) = 3 * 31 + 3 + 31 = 127 

Here mul_ext is intended to be a single instruction in our new instruction set. It 

computes a0 * a1 + a0 + a1 as a single instruction.  

Another useful multiply variation is used for converting an index in one unit of 

measure into an index in another unit of measure. It computes a0 * a1 + a0 

as a single instruction. Take for example that we have an array of 32 bit integers. 

The cell that we are indexing is found at index 4. Now we know that we have 

little endian packing and desire to have a byte index to the least significant byte 

of that same integer.  

 mul_idx( 4 , 3) = 4 * 3 + 4 = 16 

if( empty ){ 
 printf(“This empty array has no index values.\n”); 
    ... 
}else{ 
 i=0; 
 n=255; 
 loop:{ 
  printf(“i: %u\n” ,i); 
  ... 
  if( i < 255 ){ 
   i++; 
   goto loop; 
  } 
 } 
} 
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Thus given an array of integers, array[4] produces an integer, say i. For that 

same array now indexed in bytes, array[16] will be the least significant byte 

of i. 
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A scholarly recounting of the arrival of Arabic Numbers in European, and how 

the Europeans adapted them may be found in Charles Burnett’s book “Numerals 

and Arithmetic in Middle Ages”, DOI 10.33137/aestimatio.v9i0.25990. See the 

chapter, called “Why we read Arabic numerals backwards.” It is a fascinating 

book that also explains such things as the origin of the word algorithm as being 

the name of the author who wrote a paper on how to use Arabic Numbers, and 

the Arabs referring to this system of representation as Indian Numbers. 

When Arabic culture spilled into Europe translators changed the writing order 

of written documents, but they left digit sequences unaltered. Perhaps because 

they were afraid to disturb the math, or perhaps because account books and 

invoices were just too common and mundane to translate. In any case this led to 

some confusion where instructions describing how to use the numbers did not 

match the numbers shown in the same instructions. This confusion remains with 

us today in computer hardware. The exasperation among programmers is 

evident in Danny Cohen's paper, “On Holy Wars and a Plea for Peace” DOI 

10.1109/C-M.1981.220208, where he coined the terms, little-,endian and big-

endian. 

The information about ENIAC in this chapter may be found in an old IRE article 

of 1947, “Electronic Computing Circuits of the ENIAC” by Arthur W. Burks, 

DOI 10.1109/ JRPROC.1947.234265. I found it interesting that some of the 

design issues for flip-flops made of tubes, aka valves, resembled those of 

designing static ram cells in CMOS. ENIAC represents a transitional machine 

from mechanical computer to electronic computing. Relative to modern 

computers it resembles its mechanical predecessors. ENIAC used ten digit 

numbers for computation. 

Unsigned integer representation 
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Arabic Numbers 
There is little doubt that the clever readers of this book are already familiar with 

Arabic Numbers. Rather the purpose of this chapter is to establish the language 

and terminology we will use for talking about them. 

An Arabic Number consists of a sequence of digits, 𝑑଴𝑑ଵ𝑑ଶ ⋯  where each digit 

may have a value ranging from 0 to 9. In this section we will represent such 

sequences using vector notation. For example, 𝒙 = [7, 8, 9] is a vector with 

three components. Its zero index component, 𝑥଴, is 7, etc. Note that 𝒙 is written 

in bold to denote that it is a vector. 

We may interpret such vectors as numbers by using a weighted sum.  

𝑎 = ∑௜ୀ଴
௡ 𝑎௜ ∙ 𝑡𝑒𝑛௜ 

Here 𝑎 is a numeric value so it is not written in bold face. Each 𝑎௜is the ith 

component of the vector 𝒂. The value 𝑎௜ is also known as the ‘ith digit’ of the 

number. The value ten is called the base or the radix of the number. It is 

fortunate that ten is so well known that it has a name, because otherwise we 

might have been tempted to do what many other authors have done, and to write 

the base while using the very same representation that we are trying to define. 

Although this function gives numeric meaning to our digit vectors - performing 

the suggested computation is pointless. The result would be a number, and we 

would have to represent that number, and that representation would be the very 

same vector that was input into the function in the first place! 

In many contexts we may drop the decoration we have been using to signify a 

vector without causing ambiguity. It is conventional that when dropping the 

decoration that we also reverse the order of the components. So the vector from 

the prior example, 𝒙 = [7, 8, 9] becomes 𝒙 = 987. Just to be clear, note that this 

number is 13 away from a thousand. 

Independent if the number is represented with, or without, decoration, its most 

significant digit is the one with the greatest weight. In this example it is the digit 
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with the value 9, i.e. 𝑥ଶ. Analogously, the least significant digit is 7, i.e. 𝑥଴. 

Using a non-standard term from the previous chapter on arrays, the extent of our 

example number is 2. The digit count, or length, of this number is 3. 

Meaning of the word digital 
The first computing machines which performed discrete state computation 

made use of ten symbols for a digit’s potential values, just as we humans do 

when we perform manual arithmetic. Examples include Pascal’s calculator, 

Babbage’s machine, the many mechanical calculators that came after, Aiken’s 

Mark computers, and ENIAC.   

Mechanical machines used actual gears with ten positions each being 36 degrees 

apart. An index, such as a metal pointer, pointed at one of the marks thus 

indicating which digit value had been registered on the gear. To change which 

digit value was registered, the gear would be turned until the index pointed at 

the mark corresponding to the desired digit value. Instead of gears, the 

electronic computer ENIAC used circular shift registers of ten vacuum tube flip 

flops. These were called ring counters or decade counters. ENIAC operated on 

ten digit signed numbers, so there would be ten such ring counters plus a flip 

flop for each number. For the sake of this chapter I wish that ENIAC had 

operated on any other number of digits, say 20 digits, because I would not want 

the reader to conflate the number of digit values with the number of digits. 

Mechanical machines, such as the Howard Aiken’s Mark machines, gated 

rotational momentum with control linkages and clutches. ENIAC used an 

electronic analogy to the main rotating shaft, that of a central pulse clock. Pulses 

were sent to an electronic gate, and if the control to that gate allowed it, the 

pulses would pass through to the corresponding ring counters to cause each flip 

flop in the ring to flip in succession depending on the number of pulses.  

To add to digit values on a mechanical computer, the two gears in question were 

mechanically connected. When one rotated back to zero, the other rotated up to 
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the sum, possibly tipping a carry bar along the way. On ENIAC one ring counter 

would gate pulses to its partner while counted down. While pulses were gated 

to it, the second ring counter to count up, while possibly setting a carry flip-

flop.  

Hence the term digital initially meant both being discrete, and of making use of 

ten state logic. If we look at the control levers of the mechanical machines, or 

the control signals of ENIAC, we find two state switch logic, but computation 

units processed numbers consisting of ten state digits, just as human computers 

do. Early computing work gave us more than just techniques which we take for 

granted today, but also words such as gate, register, and index. 

Earlier Claude Shannon and others wrote extensively on methods for 

simplifying switch logic, and it became apparent to that direct binary 

computation could be performed. The first electronic computer to do so was the 

Atanasoff-Berry machine developed in the late 1930s. Because there are two 

states in switch logic it is maximally efficient to use a base two number system 

for arithmetic. In such an arithmetic system each binary digit will have either 

the value of either zero or one. It is conventional to shorten the term binary digit  

to bit. John Von Neuman assigned Atanasoff to audio work during World War 

II, so presumably during this time the Atanasoff-Berry machine sat unused in a 

basement at Iowa State University. 

Binary computation prevailed. By the 1950s almost all discrete state computers 

used two state switch logic for computation. Still the term digital continued to 

be used to describe them. This has led to some curious naming conventions. For 

example, the company Digital Equipment Corporation, which began shipping 

computers in 1959, only built binary computation computers. As another 

example a person who studies modern digital electronics will probably never 

see any wheels or decade counters used to implement operations in an ALUs.  

Though the term digital continues to refer to computing with discrete state 

digits, the term has lost the connotation that there must be ten of those states. 
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Today computing based on ten state digits, such as we see on handheld 

calculators, is known as decimal computing. If we had a machine that made use 

of 256 state digits, it would be neither decimal nor binary. Because we do not 

have a special name for the number 256, we would say that such a computer 

uses base 256 digits and that it is a base 256 computer. Decimal computing, 

binary computing, and even base 256 computing are now all examples of digital 

computing. Though notice, independent of the base for computation, control 

signals are almost always on or off. We say these are Boolean or binary valued, 

sometimes referring to their values as one or zero, but note they are not numbers. 

As computer implementations moved from ten state logic to two state logic it 

was hard to completely move away from the base ten number systems. This was 

particularly true in business applications where users want to see dollars and 

cents results that match computations done by hand, even when fractions and 

rounding are involved. Hence IBM came up with a scheme whereby groups of 

4 bits could be used to represent the decimal digits, this code is called binary 

coded decimal or BCD. Even today IBM machines may be found where the 

machine instructions themselves expect their operands to be encoded according 

to BCD, and thus by definition, at least in one aspect, such machines have a 

decimal architecture in the old sense of the term. 

Most computer users will never see a memory dump. Instead they will see the 

output of print functions. By default print functions render numbers in a decimal 

format familiar to the user. This happens independent of the internal 

representation used for numbers. In contemporary computing, the time it takes 

to convert a binary number to a decimal number is typically negligible 

compared to the time it takes to do a long computation. 

Scanning-Order and Digit-Order 
Had I written this book in Arabic, the text would have been written right-to-left. 

Lets explore what that looks like by using an example where we start with an 

English sentence and then reverse it. Notice that in this right to left string the 
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vector [9, 8, 7]without decoration is 987. Both strings match, and this is a good 

thing.  

♦ 

When reversed this becomes: 

♦ 

Following the 1000 year old convention, I did not reverse the order of the digits 

of the number. For the reversed sentence to make sense I had to change ‘tfel ot 

thgir’ (right to left) to ‘left to right’ – this is the sort of thing that Middle Ages 

translators did not always do. Also I had to change the brackets so that they still 

enclose the vector components. Otherwise they would be pointing outward. A 

bad thing has happened here. When reading the number our eyes first land on a 

digit of unknown weight. We must scan further right to find the one’s place, then 

count scan back while counting the digits to make sense of the number. It is 

noteworthy that reversing the string is not enough, we must also understand the 

sentence and change the phrase “right to left”, to “left to right”. 

Now imagine, we start with the same right to left string, as the early translators 

did, but instead of making an exception for numbers as they did, we literally 

reverse the entire string: 

♦ 

Now both the scan order of the scan order of the vector and the digits are the 

same. This maintains the nice property that was part of the original design of 

the Indian Numbers. Note, that 789 here is still thirteen away from one 

thousand.  

Writing from right to left the vector [7, 8, 9] without decoration is 987. 

.987 si noitaroced tuohtiw [9 ,8, 7] rotcev eht thgir ot tfel morf gnitirW 

 

Writing from right to left the vector [7, 8, 9] without decoration is 789. 
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If per chance we desired to make things uniform again, we European culture 

writers would either have to start writing from right-to-left like the Arabs do, or 

we would have to reverse the order of digits in our numbers. This latter option 

has been implemented by computer architects. For example Intel processors do 

this. 

In summary, in this section we have defined two concepts. One being that of 

scanning-order when reading and the other being digit-order of numbers. We 

discovered that if we change the scanning order without changing the digit 

order, then in effect the number will be read in reverse. 

All conventional computers use low-to-high address scanning order for writing 

and reading text. Apparently, all humans feel that low-to-high address scanning 

order for text feels natural. Relative to the low-to-high address scanning order, 

Big Endian computers follow the current Western ideal that the big digit come 

first. In contrast Little Endian computers are more faithful to the design of 

Arabic numbers, and they store numbers in a consistent manner, with scanning 

order matching the order of the digit weights. 

Because a page of text is two dimensional there are additional writing directions 

conventions. However, computer memory is one dimensional, so only the two 

we discussed here are relevant to our architecture discussion. If you happen to 

have the task of writing display drivers, then you might be exposed to some of 

the others. 

Binary, Octal, Hexadecimal, BCD 
We may interpret a vector of n bits as a number by using this function: 

∑௜ୀ଴
௡ 𝑎௜ ∙ 𝑡𝑤𝑜௜ 

Just as for vectors of decimal digits, with a vector of binary digits we may drop 

the vector decorations to give us strings of bits. And, just as for decimal digit 

strings, we have two options for writing the string: either most-significant-digit-
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first, or least-significant-digit-first, i.e. the digit with the largest weight on the 

left, or the digit with the smallest weight on the left. 

Although both strings of binary digits and strings of decimal digits grow in 

length logarithmic when counting - binary strings will grow more than twice as 

fast. The expansion to a length two string will occur immediately at the count 

of two. Length expands to three at a count of four, and then to string of length 

four at a count of eight. Hence, while incrementing to eight, the binary digit 

string has already expanded to length four, yet for the same count a decimal 

digit string remains one digit long. 

It is not fun to write such long strings, so we often place bits in groups. When 

we group bits in threes, we will be working in base eight instead of base 2. This 

is called octal notation. We use one of the symbols 0, 1, 2, 3, 4, 5, 6 or 7 for the 

octal digit values. 

♦ 

octal binary 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 

In the 1960s it was common to find computer panels with switches and lights 

organized in threes, and for coding forms to be filled out in octal. However, 

today almost all documents that must show bit strings will instead use groups 

of fours. Such a digit will have 16 values. We use the usual 0 through 9, and 

then continue with the letters, a, b, c, d, e, and f. This is known as the 

hexadecimal system, which is often shorted to hex. 

♦ 
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hex binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

a 1010 

b 1011 

c 1100 

d 1101 

e 1110 

f 1111 

It is not a coincidence that the table of hexadecimal digits is twice as long as the 

table of octal digits. Each time we add another bit to the grouping, the table will 

double in size. 

Another common grouping is that of a byte. This name is word play on the term 

bit. Today a byte is universally a group of eight bits; however, computers of the 

past have used other numbers of bits, ranging from six to twelve bits. Vestiges 

of that past remain. K&R’s “C Programming Language” leaves the length of a 

byte unspecified, The designers of UTF-8 wanted to make clear that they 

considered groups of eight, so they named such a group an octet rather than a 

byte.  

When a group of eight bits, i.e. an octet, is considered as a digit of a number, 

we will be working in base 256 (here the number 256 is given in decimal 

representation. In hexadecimal representation the base would be written as 

100.). Note octet and octal are different concepts. An octet is a group of 8 bits, 

whereas octal is a number system based on digits that have values running from 

0 to 7. 
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Groups of bits can get larger than this. The organization of early RISC 

microprocessors was such that memory was always moved in groups of 32 bits, 

called words. Today it is common that address variables will be 64 bit words 

while integer variables will be either 32 or 64 bit words. Groups of bits found 

on internal buses might be larger yet. 

We can also group bits to create numbers that have bases that are not powers of 

two. For example, in the BCD code we group bits in fours to create decimal 

digits. 

♦ 

BC
D 

binar
y 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

In BCD some possible bit value combinations are simply not used. This will 

always be the case for emulating a number base in binary switch logic when that 

base is not a power of 2. 

Octal and hexadecimal are typically used merely as writing. Internally the 

computer will be computing in binary, i.e. base 2. In contrast, BCD computation 

is not merely a writing aid, because of the ignored encodings. When two BCD 

digits are summed, the carry must occur when the sum of two digits reaches ten 

or more, which is not on a power of two boundary. 

Some processors do not support BCD computation but instead support BCD to 

binary conversion operations. So numbers that appear as BCD in memory are 

converted to binary before computation. However, other computers, most 
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notably many IBM machines, will implement BCD architectures, i.e. have 

instructions for directly operating on BCD encoded numbers. 

Although BCD encoding is less efficient, BCD encoded binary place values 

numbers still grow in length logarithmically while counting. Because numbers 

will be represented in base ten no number conversion has to be done when 

printing, but today this is of little significance. Perhaps more importantly BCD 

numbers divide by ten without creating infinite fractions. 

Allocation 
In most text documents a number is written down once and that is it. In contrast, 

while computing a program will often come back to the same memory location 

many times and change its value. This would be equivalent to going to a paper 

document and repeatedly erasing the old value, and then writing a new value in 

the same space. 

Consider the case of recording a count in real time, where at any moment we 

might have to erase the current count value, and then write a new one. Suppose 

we begin at zero. Then when something arrives to be counted we increment to 

1. We still have a single digit. Our count will grow to two digits in length upon 

reaching the count of ten. As we continue the count will grow by another digit 

in length when we reach a hundred. It grows again when we reach a thousand, 

etc. It is probably not a coincidence that we have names for the numbers at these 

boundaries. Thus a digit vector that represents the count grows in number of 

components, i.e. in length, against the log of the count value. The log function 

grows without bound, but it does so quite slowly, so the net effect is that 

relatively short digit vectors can be used to represent rather large numbers. This 

observation turns out to be key to understanding contemporary computer 

architecture. 

If we had a paper document and only left space for a single digit count, we 

would run into a problem when the count grows to ten, and an even a bigger 
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problem when it eventually grows to a thousand. If we knew in advance that we 

would want work our way up to counts in the thousands, we could simply 

allocate enough space for four digits to start with. Such an allocation by itself 

is not much of a waste of space because the digit vectors for very large numbers 

are not much longer than those for small numbers. 

Yet, for any choice we make for amount of space to allocate, the possibility 

remains that a number will come along that is so large that its representation 

doesn’t fit in the allocation, i.e. that the number will overflow the allocation. 

Basically to make reasonable allocations we must know how much numbers 

grow with the operations applied to them, and how many of those operations 

will be applied. This latter question could well be related to how long we plan 

to keep working on a given problem.  

Just as numbers require space to be written on a page of print, they also require 

space to be written into computer memory. The conventional solution is to 

assume that all numbers will fit into fixed length allocations called words. With 

static allocation a map will be made of the locations of all the words to be used 

by the program even before the program begins. These addresses will be placed 

directly into the instructions of the program by the compiler, so there will be no 

option to decide on a larger allocation for a number at runtime. 

If we assume that a program starts with initialized state, then when said program 

begins running, all numbers will fit in the words they have been allocated into. 

However, as the program runs, it is possible that larger and larger values will be 

computed then stored. This might not happen, but depending on the details of 

the program, it can happen. 

In general it is not possible to write a program that can analyze another program 

and determine how many steps it will take before stopping, or if it would ever 

stop at all. Even in specific cases where it is possible to succeed at such an 

analysis, the analysis itself might be so difficult and time consuming that the 

programmer does not judge it to be a worthwhile exercise. IN practice such 
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analysis is not done unless code is being placed into a life critical application, 

and sometimes, not even then. Because data might grow in length as a 

computation runs, computer users live under the Sword of Damocles of not 

knowing if an allocation will overflow and cause an error. If the sword does fall, 

the program might stop and emit an incomprehensible error, or it might even 

just continue blithefully on while providing garbage results. This does not 

surprise today’s users. If bothered too much they might file a bug report. The 

unlucky real time computer user might fall out of the sky and not say anything, 

and then the error might be found in the accident analysis. 

Conventional system memory is an array of allocation units called bytes. We 

call the indexes into this array system memory addresses. Being the minimum 

addressable allocation unit is the proper definition for the term byte. Hence the 

number of bits in a byte is a parameter of the computer architecture, not the 

compiler. 

It follows that any larger allocation will consist of multiple bytes. For a given 

allocation unit, the smallest address among the contained bytes is taken to be 

the address of the allocation unit. Each allocation unit is characterized by two 

parameters, its address, and its extent (or length). 

Let us put aside the question of scanning order for a moment and say that ‘a 

number starts with’ its least-significant-digit. This statement is justified based 

on the observation that independent of the writing scheme, a reader will have to 

read a number starting with its least-significant-digit to know the weights of the 

other digits. It then follows that the allocation scheme where the address of the 

allocation is the same as the address of the least-significant-digit is called little-

endian. The definition of big-endian is then more complex. A big-endian 

number will have 0 padding to fill out the allocation. With big-endian, relative 

to starting at the least-significant digit, the allocation address will be either that 

of the most-significant digit, or that of the last zero in the padding. 
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In the terminology used in this book where we view memory as a horizontal 

tape with bytes in the cells, and addresses starting at zero and getting larger 

when moving to the right - little-endian numbers have the least-significant digit 

on the left, and big-endian numbers have the least significant digit on the right 

of an allocation. We can also say that little-endian numbers are 0 padded on the 

right, and big-endian numbers are zero padded on the left. 

In Figure 10 we see a word that has bytes addressed represented in hexadecimal 

and running from c0  to c3. (In decimal these addresses would be written as 192, 

193, 194, 195; however, we almost always use hexadecimal notation for 

addresses.)  The address of the byte before c0 is the address bf. The address after 

c3 is c4, etc. The address for the word itself is taken to be c0, because that is the 

smallest byte address. This word holds a little-endian number. If we consider 

that a digit of the number is a byte, and bytes are octets, the binary encoding for 

the least-significant-digit of this number is 0001 1000. The most-significant-

digit is 1010 1110. 

♦ 

In Figure 11 the same number is placed into the word using big-endian. For all 

but very large numbers, the digit being pointed at by the allocation pointer will 

be zero. We will continue to scan zeros until either reaching the end of the 

allocation or upon reaching the most-significant-digit. If we reach the end of the 

allocation, the contained number is taken to be zero. Because this is the same 

number as shown in the prior figure, it also has the same least-significant-digit 

and the same most-significant-digit. 

 

Figure 10 Left justified, least-significant-digit-first 
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♦ 

Now suppose our word is holding a count. When counting with the little-endian 

convention, a number will grow into larger addresses as the count carries into 

new digits. In contrast, with big-endian, counting will carry into ever smaller 

memory addresses. 

Typically processor registers and busses are one word in length, and a processor 

will load the entire contents of a word of memory into a register as a single 

operation. Consequently the contemporary processors can be designed equally 

well for little-endian or big-endian number representation; however once 

designed for little-endian the processor will be incompatible with big-endian, 

and vice-versa. 

Suppose we had an unconventional processor, or perhaps a future processor, 

which loaded numbers as digit streams. The load instruction would have to have 

a means of detecting the end of a number being loaded, or it would somehow 

have to know a-priori how long the number is. Such a problem is nearly identical 

to the already existing problem of loading strings of characters. For strings both 

length counts and end terminators have been used for solving the problem of 

knowing how many characters to load.  

For serial computation, if little-endian notation is used, the processor may 

produce the first digit of the sum after receiving the first digit of the operand, 

etc. However, if big endian is used, the least significant digit will be the last to 

be loaded, so the entire number will have to be loaded before the first digit of 

the sum can be produced. If we try to load from the far ends of the operands this 

will not help, as we will not know where the far end of the sum will be located 

 

Figure 11 Same number using big-endian digit order 
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until we know if there will be a carry. A solution that would work for addition 

with serial big-endian is to perform signed digit arithmetic. 

Bit Order Within Bytes 
Data is transported between different points within a processor or computer 

system over bundles of wires called buses. Buses have specifications that 

include the order of bits in bytes, and for all contemporary machines bytes are 

octets. All compute processors, channel processors, and other devices plugged 

into a bus must conform to the bus’s specifications.  

Channel processors are often used to bridge between a computer's system bus 

and a standard storage bus that connects to one or more storage devices. In 

which case the storage device designers only must know about the standard 

storage bus specification, and do not need to know anything about the computer 

at the other end of the bus. The compatibility problem for that computer on the 

end is limited to using a channel processor that respects the given standard. 

Hence. unless a programmer is involved in the design of busses standards or 

conforming hardware interfaces, he or she will not even be aware of the order 

of bits within bytes. 

This is not to say there can’t be differences. In fact some processors do store 

bits into memory bytes in different order than others. However, the values that 

are read and written into the respective memories must be placed on a bus, and 

at that point the bit order is described by the relevant bus specification.  

On all contemporary computers it is possible to perform arithmetic on bytes. 

Carries always travel from the lower significant bits to more significant bits, 

consequently ALUs also impose a bit order within bytes. However, that order 

will conform to the order documented for the processor’s internal bus. In every 

document I have ever seen for a processor and buses, the ALU treats 

documented bit 0 as the least significant bit. 
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I challenge any programmer to try and write a C program that detects the 

physical order of bits in bytes of memory, or to identify a difference in bit order 

within bytes between computers. Because this is impossible in all but special 

cases, we typically do not say that a pointer to a byte of memory is pointing at 

either the most significant bit, nor to the least significant bit. Rather, an address 

points at the whole byte. 

Byte Order Within Words 
A given processor architecture might simultaneously have native support for 

byte data and various lengths of words. The most common word lengths being 

16, 32, and 64 bits. Stated equivalently as 4, 8, and 16 bytes. 

Most all communication channels and storage devices have payloads organized 

as octets, but they have no built in support for words. Hence when we desire to 

store a word or to communicate a word, we will be forced to first serialize the 

word into a series of bytes, then transfer or store the data, then to read the data 

back while deserializing the byte stream back into words.  

Our Indian Number derived representations consist of vectors of digits. Words 

of allocation consist of consecutively addressed bytes. Bytes are handled 

atomically by all modern machines. Hence, any bit encoding for the digits of a 

number must pack cleanly into bytes, or the digits themselves would be split 

apart. Such a clean packing might require padding with zeros to make the length 

even by 8 bits. For example, a hexadecimal string of digits might be 12 bits 

long. Another 4 zeros must be appended to make it a multiple of 8 bits. When 

this criterion is met, we suffer no loss of generalization by considering that a 

number is a series of bytes as digits. It is because of this fact that little-endian 

and big-endian are often referred to as byte orders.  

The following figure shows a stream of bytes arriving as data, and then that data 

being copied into a word. In this case the digits of the word, the bytes, arrive in 
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little-endian order and they are received on a little-endian machine, so they are 

just copied in the order they are scanned off the channel. 

♦ 

In this second case the same stream of data arrives with words serialized as bytes 

in little-endian order, but this time the receiving machine is big-endian. The 

bytes will have to be reversed on a word by word basis. 

♦ 

Here is the problem, when the data arrives there is no way to know where the 

words boundaries are. That information was lost when we serialized. If we do 

not know where the words are we cannot know when to do the byte order 

reversal. Hence this problem cannot be solved using the same approach that was 

used for solving the problem of bit order in bytes. The problem will spill over 

into the software.  

At some level of abstraction all applications must be designed to be able to make 

sense of their data. It is just too bad that byte order within words has to be an 

application level design consideration, because it has nothing to do with 

applications. 

In the case of something like the Internet Protocol, IP, the specification dictates 

the offset as to where data is to be placed into the packet header. Coding is done 

 

Figure 12 In-address-order byte by byte copy 

 

 

Figure 13 Reverse order byte copy for words 
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in a stable and efficient manner. However IP does not know where the words 

are located in the data payload it is carrying, so IP just passes the payload, byte 

order problems and all, up the abstraction stack. 

JSON is a standard for expressing tagged structured data built from primitive 

types while using character only data. It comes with a specification saying how 

numeric character strings are to be interpreted. This makes it so that both little-

endian and big-endian machines can share JSON character encoded numeric 

data. However, converting all numbers to strings and back is wasteful of 

computation time, and sending them over a channel is wasteful of bandwidth. 

In both cases more energy is used. 

There are many file formats and data communications standards that serve 

various classes of applications by making it clear where words that need to be 

reversed are located when data is transferred between machines. 

TTCA 
The native integer data type for TTCA is based on high radix online number 

system. This number system is an extension of online arithmetic. Like online 

arithmetic it uses serial most-significant-digit first signed digit arithmetic. 

Unlike signed arithmetic the radix is much higher, typically causing a digit to 

be at least a byte long, numbers may be scaled, and at compile time an analysis 

step is recommended for setting estimated precision requirements and range 

bounds. This is the subject of the next chapter. Conversion instructions are 

provided for producing other number formats. 


